Cu(Ⅱ)、Fe(Ⅲ)和Cr(Ⅲ)在弱酸性条件下对大肠杆菌的毒性和致毒机制

徐芳芳, 黄满红, 陈亮, 柿井一男. Cu(Ⅱ)、Fe(Ⅲ)和Cr(Ⅲ)在弱酸性条件下对大肠杆菌的毒性和致毒机制[J]. 环境化学, 2012, 31(12): 1840-1848.
引用本文: 徐芳芳, 黄满红, 陈亮, 柿井一男. Cu(Ⅱ)、Fe(Ⅲ)和Cr(Ⅲ)在弱酸性条件下对大肠杆菌的毒性和致毒机制[J]. 环境化学, 2012, 31(12): 1840-1848.
XU Fangfang, HUANG Manhong, CHEN Liang, KAZUO Kakii. Toxicity and mechanism of Cu(Ⅱ),Fe(Ⅲ) and Cr(Ⅲ) against Escherichia coli under weak acidic conditions[J]. Environmental Chemistry, 2012, 31(12): 1840-1848.
Citation: XU Fangfang, HUANG Manhong, CHEN Liang, KAZUO Kakii. Toxicity and mechanism of Cu(Ⅱ),Fe(Ⅲ) and Cr(Ⅲ) against Escherichia coli under weak acidic conditions[J]. Environmental Chemistry, 2012, 31(12): 1840-1848.

Cu(Ⅱ)、Fe(Ⅲ)和Cr(Ⅲ)在弱酸性条件下对大肠杆菌的毒性和致毒机制

  • 基金项目:

    国家自然科学基金(21007010)

    教育部博士点基金项目(20090075120007)

    上海科委项目(09230500200)

    交通运输部科技项目(2010353343290)

    湖南省交通厅科研项目(200908)资助.

Toxicity and mechanism of Cu(Ⅱ),Fe(Ⅲ) and Cr(Ⅲ) against Escherichia coli under weak acidic conditions

  • Fund Project:
  • 摘要: 比较了弱酸性条件下Cu(Ⅱ)、Fe(Ⅲ)和Cr(Ⅲ)单独或加入抗坏血酸(L-AscA)对大肠杆菌(E.coli)的毒性,深入分析了Cu(Ⅱ)/L-AscA体系的特性;通过电子自旋共振(ESR)定量分析羟基自由基(·OH)浓度以分析其毒性机理.结果表明,pH 4.0下L-AscA促进了Cu(Ⅱ)、Fe(Ⅲ)而非Cr(Ⅲ)的毒性,三者毒性Cu(Ⅱ)>Cr(Ⅲ)>Fe(Ⅲ).通常被认为无毒的Cr(Ⅲ)却在0.2 mmol·L-1, pH 4.0时表现出了很高的杀菌率.与0.01% L-AscA共存时,Cu(Ⅱ)为200、20 μmol·L-1和2、0.2 μmol·L-1下,E.coli的存活率分别在30 min和2 h内迅速降至零,且该体系对自然水体中分离所得的其它7种菌株同样具有明显的制御作用.ESR结果表明L-AscA的加入使200 μmol·L-1 Cu(Ⅱ)反应体系的·OH浓度约提高两倍,·OH浓度呈Cu(Ⅱ)浓度依赖.但在Fe(Ⅲ)、Cr(Ⅲ)/L-AscA体系中未检测到·OH,表明三者对细胞的致毒机制存在明显差异.
  • 加载中
  • [1] Valko M, Morris H, Cronin M T. Metals, toxicity and oxidative stress[J]. Curr Med Chem, 2005, 12(10): 1161-1208
    [2] Finney L A, O'Halloran T V. Transition metal speciation in the cell: insights from the chemistry of metal ion receptors[J]. Science, 2003, 300(5621): 931-936
    [3] Peebles B, Nagy A, Waldman W J, et al. Fenton activity and cytotoxicity studies of iron-loaded carbon particles[J]. Environ Sci Technol, 2010, 44(17): 6887-6892
    [4] 戴乾圜, 居逯. 羟基自由基与DNA中腺嘌呤碱基间反应的AM1研究[J]. 环境化学, 2010, 29(6): 529-536
    [5] Jomova K, Valko M. Advances in metal-induced oxidative stress and human disease[J]. Toxicology, 2011, 283(2/3): 65-87
    [6] Ozawa T, Hanaki A. Spin-trapping studies on the reactions of Cr(Ⅲ) with hydrogen peroxide in the presence of biological reductants: is Cr(Ⅲ) non-toxic?[J]. Biochem Int, 1990, 22(2): 343-352
    [7] Dehghan M, Akhtar-Danesh N, McMillan C R, et al. Is plasma vitamin C an appropriate biomarker of vitamin C intake? A systematic review and meta-analysis[J]. Nutr J, 2007, 6: 41-53
    [8] Cross J B, Currier R P, Torraco D J, et al. Killing of bacillus spores by aqueous dissolved oxygen, ascorbic acid, and copper ions[J]. Appl Environ Microbiol, 2003, 69(4): 2245-2252
    [9] Takemura, Y, Satoh M, Satoh K, et al. High dose of ascorbic acid induces cell death in mesothelioma cells[J]. Biochem Biophys Res Commun, 2010, 394(2): 249-253
    [10] Chen Q, Espey M G, Sun A Y, et al. Ascorbate in pharmacologic concentrations selectively generates ascorbate radical and hydrogen peroxide in extracellular fluid in vivo[J]. Proc Natl Acad Sci U S A, 2007, 104(21): 8749-8754
    [11] Clement M V, Ramalingam J, Long L H, et al. The in vitro cytotoxicity of ascorbate depends on the culture medium used to perform the assay and involves hydrogen peroxide[J]. Antioxidants & Redox Signaling, 2001, 3(1): 157-163
    [12] Arakawa N, Nemoto S, Suzuki E, et al. Role of hydrogen peroxide in the inhibitory effect of ascorbate on cell growth[J]. J Nutr Sci Vitaminol (Tokyo), 1994, 40(3): 219-227
    [13] Wang M, Yang G, Feng H, et al. Optimization of Fenton process for decoloration and COD removal in tobacco wastewater and toxicological evaluation of the effluent[J]. Water Sci Technol, 2011, 63(11): 2471-2477
    [14] Klamerth N, Malato S, Aguera A, et al. Treatment of municipal wastewater treatment plant effluents with modified photo-fenton as a tertiary treatment for the degradation of micro pollutants and disinfection[J]. Environ Sci Technol, 2012, 46(5): 2885-2892
    [15] 邹彩琼,邓安平,赵小蓉,等. 铁锰矿类Fenton异相光催化降解有毒有机染料[J]. 环境化学, 2010, 29(6): 1032-1037
    [16] Macomber L, Imlay J A. The iron-sulfur clusters of dehydratases are primary intracellular targets of copper toxicity[J]. Proc Natl Acad Sci U S A, 2009, 106(20): 8344-8349
    [17] Arciello M, Rotilio G, Rossi L. Copper-dependent toxicity in SH-SY5Y neuroblastoma cells involves mitochondrial damage[J]. Biochem Biophys Res Commun, 2005, 327(2): 454-459
    [18] Krumschnabel G, Manzl C, Berger C, et al. Oxidative stress, mitochondrial permeability transition, and cell death in Cu-exposed trout hepatocytes[J]. Toxicol Appl Pharmacol, 2005, 209(1): 62-73
    [19] Rau M A, Whitaker J, Freedman J H, et al. Differential susceptibility of fish and rat liver cells to oxidative stress and cytotoxicity upon exposure to prooxidants[J]. Comparative Biochemistry and Physiology C-Toxicology & Pharmacology, 2004, 137(4): 335-342
    [20] Banu B S, Ishaq M, Danadevi K, et al. DNA damage in leukocytes of mice treated with copper sulfate[J]. Food and Chemical Toxicology, 2004, 42(12): 1931-1936
    [21] Zastawny T H, Altman S A, Randers-Eichhorn L, et al. DNA base modifications and membrane damage in cultured mammalian cells treated with iron ions[J]. Free Radic Biol Med, 1995, 18(6): 1013-1022
  • 加载中
计量
  • 文章访问数:  803
  • HTML全文浏览数:  761
  • PDF下载数:  333
  • 施引文献:  0
出版历程
  • 收稿日期:  2012-02-29
徐芳芳, 黄满红, 陈亮, 柿井一男. Cu(Ⅱ)、Fe(Ⅲ)和Cr(Ⅲ)在弱酸性条件下对大肠杆菌的毒性和致毒机制[J]. 环境化学, 2012, 31(12): 1840-1848.
引用本文: 徐芳芳, 黄满红, 陈亮, 柿井一男. Cu(Ⅱ)、Fe(Ⅲ)和Cr(Ⅲ)在弱酸性条件下对大肠杆菌的毒性和致毒机制[J]. 环境化学, 2012, 31(12): 1840-1848.
XU Fangfang, HUANG Manhong, CHEN Liang, KAZUO Kakii. Toxicity and mechanism of Cu(Ⅱ),Fe(Ⅲ) and Cr(Ⅲ) against Escherichia coli under weak acidic conditions[J]. Environmental Chemistry, 2012, 31(12): 1840-1848.
Citation: XU Fangfang, HUANG Manhong, CHEN Liang, KAZUO Kakii. Toxicity and mechanism of Cu(Ⅱ),Fe(Ⅲ) and Cr(Ⅲ) against Escherichia coli under weak acidic conditions[J]. Environmental Chemistry, 2012, 31(12): 1840-1848.

Cu(Ⅱ)、Fe(Ⅲ)和Cr(Ⅲ)在弱酸性条件下对大肠杆菌的毒性和致毒机制

  • 1.  东华大学环境科学与工程学院, 上海, 201620;
  • 2.  日本宇都宫大学材料与环境化学系, 宇都宫, 321-0904
基金项目:

国家自然科学基金(21007010)

教育部博士点基金项目(20090075120007)

上海科委项目(09230500200)

交通运输部科技项目(2010353343290)

湖南省交通厅科研项目(200908)资助.

摘要: 比较了弱酸性条件下Cu(Ⅱ)、Fe(Ⅲ)和Cr(Ⅲ)单独或加入抗坏血酸(L-AscA)对大肠杆菌(E.coli)的毒性,深入分析了Cu(Ⅱ)/L-AscA体系的特性;通过电子自旋共振(ESR)定量分析羟基自由基(·OH)浓度以分析其毒性机理.结果表明,pH 4.0下L-AscA促进了Cu(Ⅱ)、Fe(Ⅲ)而非Cr(Ⅲ)的毒性,三者毒性Cu(Ⅱ)>Cr(Ⅲ)>Fe(Ⅲ).通常被认为无毒的Cr(Ⅲ)却在0.2 mmol·L-1, pH 4.0时表现出了很高的杀菌率.与0.01% L-AscA共存时,Cu(Ⅱ)为200、20 μmol·L-1和2、0.2 μmol·L-1下,E.coli的存活率分别在30 min和2 h内迅速降至零,且该体系对自然水体中分离所得的其它7种菌株同样具有明显的制御作用.ESR结果表明L-AscA的加入使200 μmol·L-1 Cu(Ⅱ)反应体系的·OH浓度约提高两倍,·OH浓度呈Cu(Ⅱ)浓度依赖.但在Fe(Ⅲ)、Cr(Ⅲ)/L-AscA体系中未检测到·OH,表明三者对细胞的致毒机制存在明显差异.

English Abstract

参考文献 (21)

返回顶部

目录

/

返回文章
返回