巢湖东半湖饮用水源区沉积物药品和个人护理品(PPCPs)分布与生态风险

潘潇, 强志民, 王为东. 巢湖东半湖饮用水源区沉积物药品和个人护理品(PPCPs)分布与生态风险[J]. 环境化学, 2016, 35(11): 2234-2244. doi: 10.7524/j.issn.0254-6108.2016.11.2016040502
引用本文: 潘潇, 强志民, 王为东. 巢湖东半湖饮用水源区沉积物药品和个人护理品(PPCPs)分布与生态风险[J]. 环境化学, 2016, 35(11): 2234-2244. doi: 10.7524/j.issn.0254-6108.2016.11.2016040502
PAN Xiao, QIANG Zhimin, WANG Weidong. Distribution and ecological risk of sedimentary PPCPs in the eastern drinking water source area of Chaohu Lake[J]. Environmental Chemistry, 2016, 35(11): 2234-2244. doi: 10.7524/j.issn.0254-6108.2016.11.2016040502
Citation: PAN Xiao, QIANG Zhimin, WANG Weidong. Distribution and ecological risk of sedimentary PPCPs in the eastern drinking water source area of Chaohu Lake[J]. Environmental Chemistry, 2016, 35(11): 2234-2244. doi: 10.7524/j.issn.0254-6108.2016.11.2016040502

巢湖东半湖饮用水源区沉积物药品和个人护理品(PPCPs)分布与生态风险

  • 基金项目:

    国家水体污染控制与治理科技重大专项课题(2014ZX07405-003)资助.

Distribution and ecological risk of sedimentary PPCPs in the eastern drinking water source area of Chaohu Lake

  • Fund Project: Supported by the Major National Water Pollution Control and Management Project (2014ZX07405-003).
  • 摘要: 采用超声溶剂萃取(USE)、固相萃取(SPE)组合前处理和超高液相色谱-串联质谱(UPLC-MS/MS)方法,对巢湖东半湖饮用水源区120 km2范围内的14个采样点的沉积物中28种药品和个人护理品(PPCPs)进行了检测,并评估其生态风险.结果显示,在检测的28种PPCPs中,有21种在所有样点均未检出,有3种在部分样点达到检出限、但未达到定量限,有4种在部分样点达到了定量限,分别是苯扎贝特(BF)、咖啡因(CAF)、四环素(TCN)、泰妙菌素(TIA).4种PPCPs的最大含量分别为:BF 6.19 μg·kg-1、CAF 3.30 μg·kg-1、TCN 7.06 μg·kg-1、TIA 27.60 μg·kg-1,其定量检出率分别为:BF 35.7%、CAF 28.6%、TCN 21.4%、TIA 85.7%.沉积物PPCPs含量在沿岸带高于敞水带,且沿主湖流方向自西向东呈降低趋势.分析了PPCPs分布与沉积物性质的关系,发现其与部分理化指标存在正相关或负相关关系.采用风险商(RQ)法对4种检出的PPCPs进行生态风险评估,显示在78.5%的采样点对藻类有中等风险或高风险,对无脊椎动物、鱼类在42.9%的采样点存在中等风险,其余为低风险.巢湖东半湖饮用水源区沉积物PPCPs的生态风险需引起重视.
  • 加载中
  • [1] YANG Y Y, TOOR G S, WILLIAMS C F. Pharmaceuticals and organochlorine pesticides in sediments of an urban river in Florida, USA[J]. Journal of Soils and Sediments, 2015, 15(4):993-1004.
    [2] KASPRZYK-HORDERN B, DINSDALE R M, GUWY A J. The occurrence of pharmaceuticals, personal care products, endocrine disruptors and illicit drugs in surface water in South Wales, UK[J]. Water Research, 2008, 42(13):3498-3518.
    [3] SILVA B F D, JELIC A, LóPEZ-SERNA R, et al. Occurrence and distribution of pharmaceuticals in surface water, suspended solids and sediments of the Ebro River basin, Spain[J]. Chemosphere, 2011, 85(8):1331-1339.
    [4] MATONGO S, BIRUNGI G, MOODLEY B, et al. Occurrence of selected pharmaceuticals in water and sediment of Umgeni River, KwaZulu-Natal, South Africa[J]. Environmental Science and Pollution Research, 2015, 22(13):10298-10308.
    [5] HEBERER T. Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment:A review of recent research data[J]. Toxicology Letters, 2002, 131(1-2):5-17.
    [6] LIN T, YU S L, CHEN W. Occurrence, removal and risk assessment of pharmaceutical and personal care products (PPCPs) in an advanced drinking water treatment plant (ADWTP) around Taihu Lake in China[J]. Chemosphere, 2016, 152:1-9.
    [7] FERGUSON P J, BERNOT M J, DOLL J C, et al. Detection of pharmaceuticals and personal care products (PPCPs) in near-shore habitats of southern Lake Michigan[J]. Science of the Total Environment, 2013, 458-460:187-196.
    [8] LI H X, HELM P A,METCALFE C D. Sampling in the Great Lakes for pharmaceuticals, personal care products, and endocrine-disrupting substances using the passive polar organic chemical integrative sampler[J]. Environmental Chemistry, 2009, 29(4):751-762.
    [9] JIANG L, HU X L, YIN D Q, et al. Occurrence, distribution and seasonal variation of antibiotics in the Huangpu River, Shanghai, China[J]. Chemosphere, 2011, 82(6):822-828.
    [10] LI W, GAO L, SHI Y, et al. Occurrence, distribution and risks of antibiotics in urban surface water in Beijing, China[J]. Environmental Science:Processes & Impacts, 2015, 17(9):1611-1619.
    [11] DENG W, LI N, ZHENG H, et al. Occurrence and risk assessment of antibiotics in river water in Hong Kong[J]. Ecotoxicology and Environmental Safety, 2016, 125:121-127.
    [12] HAIß A, KVMMERER K. Biodegradability of the X-ray contrast compound diatrizoic acid, identification of aerobic degradation products and effects against sewage sludge micro-organisms[J]. Chemosphere, 2006, 62(2):294-302.
    [13] LEUNG H W, JIN L, WEI S, et al. Pharmaceuticals in Tap Water:Human health risk assessment and proposed monitoring framework in China[J]. Environmental Health Perspectives, 2013, 121(7):839-846.
    [14] LIN A Y C, TSAI Y T. Occurrence of pharmaceuticals in Taiwan's surface waters:Impact of waste streams from hospitals and pharmaceutical production facilities[J]. Science of the Total Environment, 2009, 407(12):3793-3802.
    [15] DAUGHTON C G, TERNES T A. Pharmaceuticals and personal care products in the environment:Agents of subtle change?[J]. Environmental Health Perspectives, 1999, 107(Suppl 6):907-938.
    [16] JIN J W, DUAN H T, ZHAO C L, et al. Remote estimation of phytoplankton pigments in inland lake waters with algae[J]. Journal of Infrared and Millimeter Waves, 2012, 31(2):132-136.
    [17] 张民, 孔繁翔. 巢湖富营养化的历程、空间分布与治理策略(1984-2013年)[J]. 湖泊科学, 2015, (5):791-798. ZHANG M, KONG F X. The process, spatial and temporal distributions and mitigation strategies of the eutrophication of Lake Chaohu (1984

    -2013)[J]. Journal of Lake Science, 2015, 27(5):791-798(in Chinese).

    [18] 杜臣昌, 刘恩峰, 羊向东, 等巢湖沉积物重金属富集特征与人为污染评价[J]. 湖泊科学, 2012, (1):59-66. DU C C, LIU E F, YANG X D,et al. Characteristics of enrichment and evaluation of anthropogenic pollution of heavy metals in the sediments of Lake Chaohu[J]. Journal of Lake Science, 2012

    , 24(1):59-66(in Chinese).

    [19] TANG J, SHI T Z, WU X W, et al. The occurrence and distribution of antibiotics in Lake Chaohu, China:Seasonal variation, potential source and risk assessment[J]. Chemosphere, 2015, 122(3):154-161.
    [20] 唐俊, 陈海燕, 史陶中, 等. 巢湖喹诺酮及四环素类药物污染现状及来源分析[J]. 安徽农业大学学报, 2013, 40(6):1043-1048.

    TANG J, CHEN H Y, SHI T Z, et al. Occurrence of quinolones and tetracyclines antibiotics in the aquatic environment of Chaohu Lake[J]. Journal of Anhui Agricultural University, 2013, 40(6):1043-1048(in Chinese).

    [21] 唐俊, 张付海, 王晨晨, 等. 巢湖及入湖河流中磺胺抗生素残留现状分析[J]. 安全与环境学报, 2014, 14(4):334-338.

    TANG J, ZHANG F H, WANG C C, et al. The sulfonamides antibiotics residue analysis of Chao Lake and the inflow rivers[J]. Journal of Safety and Environment, 2014, 14(4):334-338(in Chinese).

    [22] ZHAO J L, YING G G, CHEN F, et al. Estrogenic activity profiles and risks in surface waters and sediments of the Pearl River system in South China assessed by chemical analysis and in vitro Bioassay[J]. Journal of Environmental Monitoring, 2011, 13(4):813-821.
    [23] YUAN X J, QIANG Z M, BEN W W, et al. Rapid detection of multiple class pharmaceuticals in both municipal wastewater and sludge with ultra high performance liquid chromatography tandem mass spectrometry[J]. Journal of Environmental Science, 2014, 26(9):1949-1959.
    [24] DÍAZ-CRUZ M S, GARCÍA-GALÁN M J, BARCELÓ D. Highly sensitive simultaneous determination of sulfonamide antibiotics and one metabolite in environmental waters by liquid chromatography-quadrupole linear ion trap-mass spectrometry[J]. Journal of Chromatography A, 2008, 1193(1-2):50-59.
    [25] YUAN X J, QIANG Z M, BEN W W, et al. Distribution, mass load and environmental impact of multiple-class pharmaceuticals in conventional and upgraded municipal wastewater treatment plants in East China[J]. Environmental Science:Processes & Impacts, 2015, 17(3):596-605.
    [26] SANDERSON H, JOHNSON D J, WILSON C J, et al. Probabilistic hazard assessment of environmentally occurring pharmaceuticals toxicity to fish, daphnids and algae by ECOSAR screening[J]. Toxicology Letters, 2003, 144(3):383-395.
    [27] YU Y, WU L S, CHANG A C. Seasonal variation of endocrine disrupting compounds, pharmaceuticals and personal care products in wastewater treatment plants[J]. Science of the Total Environment, 2013, 442(1):310-316.
    [28] 赵建亮, 应光国, 魏东斌, 等. 水体和沉积物中毒害污染物的生态风险评价方法体系研究进展[J]. 生态毒理学报, 2011, 6(6):577-588.

    ZHAO J L, YING G G, WEI D B, et al. Ecological risk assessment methodology of toxic pollutants in surface water and sediments:A review[J]. Asian Journal of Ecotoxicology, 2011, 6(6):577-588(in Chinese).

    [29] YANG G, WANG C, CHIU Y H. Occurrence and distribution of phthalate esters and pharmaceuticals in Taiwan river sediments[J]. Journal of Soils and Sediments, 2015, 15(1):198-210.
    [30] CHEN K, ZHOU J L. Occurrence and behavior of antibiotics in water and sediments from the Huangpu River, Shanghai, China[J]. Chemosphere, 2014, 95:604-612.
    [31] YANG J F, YING G G, ZHAO J L, et al. Spatial and seasonal distribution of selected antibiotics in surface waters of the Pearl Rivers, China[J]. Journal of Environmental Science and Health, Part B, 2011, 46(3):272-280.
    [32] WU C, HUANG X, WITTER J D, et al. Occurrence of pharmaceuticals and personal care products and associated environmental risks in the central and lower Yangtze River, China[J]. Ecotoxicology and Environmental Safety, 2014, 106:19-26.
    [33] HAJJ-MOHAMAD M, ABOULFADL K, DARWANO H, et al. Wastewater micropollutants as tracers of sewage contamination:Analysis of combined sewer overflow and stream sediments[J]. Environmental Science:Processes & Impacts, 2014, 16(10):2442-2450.
    [34] JONES-LEPP T L, STEVENS R. Pharmecuticals and personal care products in biosolids/sewage sludge:The interface between analytical chemistry and regulation[J]. Analytical and Bioanalytical Chemistry, 2007, 387(4):1173-1183.
    [35] ZHANG Z Y, SUN K, GAO B, et al. Adsorption of tetracycline on soil and sediment:Effects of pH and the presence of Cu(Ⅱ)[J]. Journal of Hazardous Materials, 2011, 190(1-3):856-862.
    [36] STYSZKO K, SOSNOWSKA K, WOJTANOWICZ P, et al. Sorption of ibuprofen on sediments from the Dobczyce (Southern Poland) drinking water reservoir[J]. Archives of Environmental Protection, 2010, 36(4):81-91.
    [37] TILZER M M, GELLER W. Global water supply and threats to global water supply//Sund H, ed. Environmental protection and lake ecosystem[M]. Beijing:China Science & Technology Press, 1993:61-66.
    [38] 王苏民, 窦鸿身.中国湖泊志[M].北京:科学出版社, 1998:230-235. WANG S M, DOU H S. Chinese Lake[M]. Beijing:Science Press, 1998:230

    -235(in Chinese).

  • 加载中
计量
  • 文章访问数:  870
  • HTML全文浏览数:  744
  • PDF下载数:  330
  • 施引文献:  0
出版历程
  • 收稿日期:  2016-04-05
  • 刊出日期:  2016-11-15

巢湖东半湖饮用水源区沉积物药品和个人护理品(PPCPs)分布与生态风险

  • 1.  中国科学院饮用水科学与技术重点实验室, 中国科学院生态环境研究中心, 北京, 100085;
  • 2.  中国科学院大学, 北京, 100049
基金项目:

国家水体污染控制与治理科技重大专项课题(2014ZX07405-003)资助.

摘要: 采用超声溶剂萃取(USE)、固相萃取(SPE)组合前处理和超高液相色谱-串联质谱(UPLC-MS/MS)方法,对巢湖东半湖饮用水源区120 km2范围内的14个采样点的沉积物中28种药品和个人护理品(PPCPs)进行了检测,并评估其生态风险.结果显示,在检测的28种PPCPs中,有21种在所有样点均未检出,有3种在部分样点达到检出限、但未达到定量限,有4种在部分样点达到了定量限,分别是苯扎贝特(BF)、咖啡因(CAF)、四环素(TCN)、泰妙菌素(TIA).4种PPCPs的最大含量分别为:BF 6.19 μg·kg-1、CAF 3.30 μg·kg-1、TCN 7.06 μg·kg-1、TIA 27.60 μg·kg-1,其定量检出率分别为:BF 35.7%、CAF 28.6%、TCN 21.4%、TIA 85.7%.沉积物PPCPs含量在沿岸带高于敞水带,且沿主湖流方向自西向东呈降低趋势.分析了PPCPs分布与沉积物性质的关系,发现其与部分理化指标存在正相关或负相关关系.采用风险商(RQ)法对4种检出的PPCPs进行生态风险评估,显示在78.5%的采样点对藻类有中等风险或高风险,对无脊椎动物、鱼类在42.9%的采样点存在中等风险,其余为低风险.巢湖东半湖饮用水源区沉积物PPCPs的生态风险需引起重视.

English Abstract

参考文献 (38)

目录

/

返回文章
返回