Mn2+协同Fe3+-EDTA在中性pH条件下催化类Fenton降解水中卡马西平

李怡帆, 孙剑辉, 孙胜鹏. Mn2+协同Fe3+-EDTA在中性pH条件下催化类Fenton降解水中卡马西平[J]. 环境化学, 2017, 36(11): 2319-2324. doi: 10.7524/j.issn.0254-6108.2017040502
引用本文: 李怡帆, 孙剑辉, 孙胜鹏. Mn2+协同Fe3+-EDTA在中性pH条件下催化类Fenton降解水中卡马西平[J]. 环境化学, 2017, 36(11): 2319-2324. doi: 10.7524/j.issn.0254-6108.2017040502
LI Yifan, SUN Jianhui, SUN Shengpeng. Degradation of carbamazepine in aqueous solutions by Mn2+-mediated Fenton-like reaction of Fe3+-EDTA complex at neutral pH[J]. Environmental Chemistry, 2017, 36(11): 2319-2324. doi: 10.7524/j.issn.0254-6108.2017040502
Citation: LI Yifan, SUN Jianhui, SUN Shengpeng. Degradation of carbamazepine in aqueous solutions by Mn2+-mediated Fenton-like reaction of Fe3+-EDTA complex at neutral pH[J]. Environmental Chemistry, 2017, 36(11): 2319-2324. doi: 10.7524/j.issn.0254-6108.2017040502

Mn2+协同Fe3+-EDTA在中性pH条件下催化类Fenton降解水中卡马西平

  • 基金项目:

    河南省创新型科技人才队伍建设工程-河南省科技创新杰出人才计划(134200510014)和江苏省自然科学基金青年基金(BK20140341)资助.

Degradation of carbamazepine in aqueous solutions by Mn2+-mediated Fenton-like reaction of Fe3+-EDTA complex at neutral pH

  • Fund Project: Supported by the Innovation Scientists and Technicians Troop Construction Projects of Henan Province, Plan for Scientific Innovation Talent of Henan Province (134200510014) and the Natural Science Foundation of Jiangsu Province (BK20140341).
  • 摘要: 研究了Mn2+协同Fe3+-EDTA络合体催化类Fenton反应,在中性pH条件下对水中新兴污染物卡马西平的降解情况.考察了Mn2+∶Fe3+、EDTA∶Fe3+和H2O2∶Fe3+的物质的量比率、Fe3+浓度和初始pH等关键因素对卡马西平降解效果的影响.结果表明,共存Mn2+能够显著增强Fe3+-EDTA络合体催化类Fenton反应体系的氧化能力.在0.1 mmol·L-1Fe3+、EDTA∶Fe3+为2∶1、Mn2+∶Fe3+为1∶1、H2O2∶Fe3+为150∶1和pH 7.0的条件下,经过20 min反应时间,卡马西平的降解率能够达到100%,表观降解速率常数达到0.6374 min-1.其增效机理是通过Mn2+-EDTA与H2O2反应促进O2·-的产生,进而加速还原Fe3+-EDTA至Fe2+-EDTA,间接提高HO·的产生速率.研究结果能够为水中卡马西平的有效去除提供参考.
  • 加载中
  • [1] FAN Z, HU J, AN W, et al. Detection and occurrence of chlorinated byproducts of bisphenol a, nonylphenol, and estrogens in drinking water of China:Comparison to the parent compounds[J]. Environmental Science & Technology, 2013, 47(19):10841-10850.
    [2] BENOTTI M J, TRENHOLM R A, VANDERFORD B J, et al. Pharmaceuticals and endocrine disrupting compounds in U.S. drinking water[J]. Environmental Science & Technology, 2009, 43(3):597-603.
    [3] MIÈGE C, CHOUBERT J M, RIBEIRO L, et al. Fate of pharmaceuticals and personal care products in wastewater treatment plants-Conception of a database and first results[J]. Environmental Pollution, 2009, 157(5):1721-1726.
    [4] CLARA M, STRENN B, KREUZINGER N, Carbamazepine as a possible anthropogenic marker in the aquatic environment:Investigations on the behaviour of Carbamazepine in wastewater treatment and during groundwater infiltration[J]. Water Research, 2004, 38(4):947-954.
    [5] RADJENOVIĆ J, PETROVIĆ M, BARCELÓ D, Fate and distribution of pharmaceuticals in wastewater and sewage sludge of the conventional activated sludge (CAS) and advanced membrane bioreactor (MBR) treatment[J]. Water Research, 2009, 43(3):831-841.
    [6] MATAMOROS V, GARCÍA J, BAYONA J M. Organic micropollutant removal in a full-scale surface flow constructed wetland fed with secondary effluent[J]. Water Research, 2008, 42(3):653-660.
    [7] BUXTON G V, GREENSTOCK C L, HELMAN W P, et al. Critical-review of rate constants for reactions of hydrated electrons, hydrogen-atoms and hydroxyl radicals (·OH/·O-) in aqueous-solution[J]. Journal of Physical and Chemical Reference Data, 1988, 17(2):513-886.
    [8] WALLING C. Fenton's reagent revisited[J]. Accounts of Chemical Research, 1975, 8(4):125-131.
    [9] PIGNATELLO J J, OLIVEROS E, MACKAY A. Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry[J]. Critical Reviews in Environmental Science and Technology, 2006, 36(1):1-84.
    [10] RUBIO-CLEMENTE, TORRES-PALMA R A, PEÑUELA G A. Removal of polycyclic aromatic hydrocarbons in aqueous environment by chemical treatments:A review[J]. Science of the Total Environment, 2014, 478:201-225.
    [11] DENG Y, ENGLEHARDT J D. Treatment of landfill leachate by the Fenton process[J]. Water Research, 2006, 40(20):3683-3694.
    [12] LI W, NANABOINA V, ZHOU Q, et al. Effects of Fenton treatment on the properties of effluent organic matter and their relationships with the degradation of pharmaceuticals and personal care products[J]. Water Research, 2012, 46(2):403-412.
    [13] DAO Y H, DE LAAT J. Hydroxyl radical involvement in the decomposition of hydrogen peroxide by ferrous and ferric-nitrilotriacetate complexes at neutral pH[J]. Water Research, 2011, 45(11):3309-3317.
    [14] SUN S P, ZENG X, LEMLEY A T. Kinetics and mechanism of carbamazepine degradation by a modified Fenton-like reaction with ferric-nitrilotriacetate complexes[J]. Journal of Hazardous Materials, 2013, 252-253:155-165.
    [15] HUANG W, BRIGANTE M, WU F, et al. Assessment of the Fe(Ⅲ)-EDDS complex in Fenton-like processes:From the radical formation to the degradation of bisphenol A[J]. Environmental Science & Technology, 2013, 47(4):1952-1959.
    [16] WATTS R J, BOTTENBERG B C, HESS T F, et al. Role of reductants in the enhanced desorption and transformation of chloroaliphatic compounds by modified Fenton's reactions[J]. Environmental Science & Technology, 1999, 33(19):3432-3437.
  • 加载中
计量
  • 文章访问数:  1428
  • HTML全文浏览数:  1345
  • PDF下载数:  227
  • 施引文献:  0
出版历程
  • 收稿日期:  2017-04-05
  • 刊出日期:  2017-11-15

Mn2+协同Fe3+-EDTA在中性pH条件下催化类Fenton降解水中卡马西平

  • 1.  河南师范大学环境学院, 黄淮水环境与污染防治教育部重点实验室, 河南省环境污染控制重点实验室, 新乡, 453007;
  • 2.  苏州大学材料与化学化工学部, 化工与环境工程学院, 苏州市绿色化工重点实验室, 苏州, 215123
基金项目:

河南省创新型科技人才队伍建设工程-河南省科技创新杰出人才计划(134200510014)和江苏省自然科学基金青年基金(BK20140341)资助.

摘要: 研究了Mn2+协同Fe3+-EDTA络合体催化类Fenton反应,在中性pH条件下对水中新兴污染物卡马西平的降解情况.考察了Mn2+∶Fe3+、EDTA∶Fe3+和H2O2∶Fe3+的物质的量比率、Fe3+浓度和初始pH等关键因素对卡马西平降解效果的影响.结果表明,共存Mn2+能够显著增强Fe3+-EDTA络合体催化类Fenton反应体系的氧化能力.在0.1 mmol·L-1Fe3+、EDTA∶Fe3+为2∶1、Mn2+∶Fe3+为1∶1、H2O2∶Fe3+为150∶1和pH 7.0的条件下,经过20 min反应时间,卡马西平的降解率能够达到100%,表观降解速率常数达到0.6374 min-1.其增效机理是通过Mn2+-EDTA与H2O2反应促进O2·-的产生,进而加速还原Fe3+-EDTA至Fe2+-EDTA,间接提高HO·的产生速率.研究结果能够为水中卡马西平的有效去除提供参考.

English Abstract

参考文献 (16)

目录

/

返回文章
返回