茶渣负载纳米四氧化三铁复合材料制备及其对亚甲基蓝的吸附机理

姚时, 张鸣帅, 李林璇, 廖云开, 周娜, 范世锁, 唐俊. 茶渣负载纳米四氧化三铁复合材料制备及其对亚甲基蓝的吸附机理[J]. 环境化学, 2018, 37(1): 96-107. doi: 10.7524/j.issn.0254-6108.2017050401
引用本文: 姚时, 张鸣帅, 李林璇, 廖云开, 周娜, 范世锁, 唐俊. 茶渣负载纳米四氧化三铁复合材料制备及其对亚甲基蓝的吸附机理[J]. 环境化学, 2018, 37(1): 96-107. doi: 10.7524/j.issn.0254-6108.2017050401
YAO Shi, ZHANG Mingshuai, LI Linxuan, LIAO Yunkai, ZHOU Na, FAN Shisuo, TANG Jun. Preparation of tea waste-nano Fe3O4 composite and its removal mechanism of methylene blue from aqueous solution[J]. Environmental Chemistry, 2018, 37(1): 96-107. doi: 10.7524/j.issn.0254-6108.2017050401
Citation: YAO Shi, ZHANG Mingshuai, LI Linxuan, LIAO Yunkai, ZHOU Na, FAN Shisuo, TANG Jun. Preparation of tea waste-nano Fe3O4 composite and its removal mechanism of methylene blue from aqueous solution[J]. Environmental Chemistry, 2018, 37(1): 96-107. doi: 10.7524/j.issn.0254-6108.2017050401

茶渣负载纳米四氧化三铁复合材料制备及其对亚甲基蓝的吸附机理

  • 基金项目:

    国家自然科学基金(51609001),安徽农业大学人才稳定项目(yj2015-23)和大学生创新项目(201710364055)资助.

Preparation of tea waste-nano Fe3O4 composite and its removal mechanism of methylene blue from aqueous solution

  • Fund Project: Supported by the National Science Foundation of China (51609001), Anhui Agricultural Youth Project (yj2015-23) and Undergraduate Innovation Project (201710364055).
  • 摘要: 采用化学沉淀法将Fe3O4纳米颗粒负载到茶渣(tea waste,TW)上,之后对TW-Fe3O4复合材料进行表征,并研究其对典型染料废水亚甲基蓝(MB)的去除效果及机理.结果表明,固液比为4.0 g·L-1,pH6.92)未调整,接触时间为120 min,TW-Fe3O4对亚甲基蓝去除率可达98.70%.拟二级动力学模型可较好描述TW-Fe3O4吸附亚甲基蓝的过程.TW-Fe3O4复合材料对亚甲基蓝的去除可分为快吸附和慢吸附两个阶段.Langmuir、Temkin和Dubinin-Radushkevich模型均能较好拟合吸附过程.Langmuir拟合得到的最大饱和吸附量为84.47 mg·g-1.3次吸附-解吸循环实验之后,发现TW-Fe3O4对MB去除效果有限,表明结合较为稳定.TW-Fe3O4对MB的吸附机理涉及静电作用、离子交换、氢键作用、π-π堆积等.动力学、FTIR和XPS分析显示茶渣的表面官能团在吸附中能发挥重要作用.因此,TW-Fe3O4复合材料有作为染料污染废水修复剂的潜力,且能较为方便的从溶液中分离.
  • 加载中
  • [1] FORGACS E, CSERHATI T, OROS G. Removal of synthetic dyes from wastewaters:A review[J]. Environment International, 2004, 30(7):953-971.
    [2] ROBINSON T, MCMULLAN G, MARCHANT R, et al. Remediation of dyes in textile effluent:A critical review on current treatment technologies with a proposed alternative[J]. Bioresource Technology, 2001, 77(3):247-255.
    [3] LIU J F, ZHAO Z, JIANG G. Coating Fe3O4 magnetic nanoparticles with humic acid for high efficient removal of heavy metals in water[J]. Environmental Science Technology, 2008, 42(18):6949-6954.
    [4] 常青,江国栋,胡梦璇,等. 石墨烯基磁性复合材料吸附水中亚甲基蓝的研究[J].环境科学,2014,35(5):1804-1809.

    CHANG Q, JIANG G D, HU M X, et al. Adsorption of methylene blue from aqueous solution onto magnetic Fe3O4/graphene oxide nanoparticles[J]. Environmental Science, 2014, 35(5):1804-1809(in Chinese).

    [5] 林青雯,赵琪,高梦凡,等. Fe3O4/纤维素纳米复合材料的制备及其对亚甲基蓝的吸附[J]. 环境工程学报, 2016, 10(11):6451-6456.

    LIN Q W, ZHAO Q, GAO M F, et al. reparation of Fe3O4/cellulose nanocomposites and its adsorption to methylene blue[J]. Chinese Journal of Environmental Engineering, 2016, 10(11):6451-6456(in Chinese).

    [6] 张佳, 任秉雄, 王鹏, 等. 山茶籽粉吸附亚甲基蓝的性能研究[J].环境化学, 2013, 32(8):1539-1545.

    ZHANG J, REN B X, WANG P, et al. Mechanistic study on adsorption of methylene blue on tea seed powder[J]. Environmental Chemistry, 2013, 32(8):1539-1545(in Chinese).

    [7] FAN S, WANG Y, LI Y, et al. Facile synthesis of tea waste/Fe3O4 nanoparticle composite for hexavalent chromium removal from aqueous solution[J]. RSC Advances, 2017, 7(13):7576-7590.
    [8] EBRAHIMIANPIRBAZARI A, SABERIKHAH E, GHOLAMI AHMAD GORABI N. Fe3O4 nanoparticles loaded onto wheat straw:An efficient adsorbent for Basic Blue 9 adsorption from aqueous solution[J]. Desalination and Water Treatment, 2016, 57(9):4110-4121.
    [9] PANNEERSELVAM P, MORAD N, TAN K A. Magnetic nanoparticle (Fe3O4) impregnated onto tea waste for the removal of nickel (Ⅱ) from aqueous solution[J]. Journal of Hazardous Materials, 2011, 186(1):160-168.
    [10] IOANNIDOU O, ZABANIOTOU A. Agricultural residues as precursors for activated carbon production-A review[J]. Renewable and Sustainable Energy Reviews, 2007, 11(9):1966-2005.
    [11] FAN S, TANG J, WANG Y, et al. Biochar prepared from co-pyrolysis of municipal sewage sludge and tea waste for the adsorption of methylene blue from aqueous solutions:Kinetics, isotherm, thermodynamic and mechanism[J]. Journal of Molecular Liquids, 2016, 220:432-441.
    [12] EROǧLU H, YAPICI S, NUHOǧLU Ç, et al. An environmentally friendly process:Adsorption of radionuclide Tl-201 on fibrous waste tea[J]. Journal of Hazardous Materials, 2009, 163(2):607-617.
    [13] ZHANG Q, HAN X, TANG B. Preparation of a magnetically recoverable biocatalyst support on monodisperse Fe3O4 nanoparticles[J]. RSC Advances, 2013, 3(25):9924-9931.
    [14] CHEN S Q, CHEN Y L, JIANG H. Slow pyrolysis magnetization of hydrochar for effective and highly stable removal of tetracycline from aqueous solution[J]. Industrial Engineering Chemistry Research, 2017, 56(11):3059-3066.
    [15] MILCZAREK G, CISZEWSKI A, STEPNIAK I. Oxygen-doped activated carbon fiber cloth as electrode material for electrochemical capacitor[J]. Journal of Power Sources, 2011, 196(18):7882-7885.
    [16] ZHAO L, BACCILE N, GROSS S, et al. Sustainable nitrogen-doped carbonaceous materials from biomass derivatives[J]. Carbon, 2010, 48(13):3778-3787.
    [17] YAMASHITA T, HAYES P. Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials[J]. Applied Surface Science, 2008, 254(8):2441-2449.
    [18] LAGERGREN S. About the theory of so-called adsorption of soluble substances[J]. K Sven Vetenskapsakad Handl, 1898, 24:1-39.
    [19] HO Y S, MCKAY G. Pseudo-second order model for sorption processes[J]. Process Biochemistry, 1999, 34(5):451-465.
    [20] CHIEN S H, CLAYTON W R. Application of Elovich equation to the kinetics of phosphate release and sorption in soils[J]. Soil Science Society of America Journal, 1980, 44(2):265-268.
    [21] CHEN Z, CHEN B, CHIOU C T. Fast and slow rates of naphthalene sorption to biochars produced at different temperatures[J]. Environmental Science Technology, 2012, 46(20):11104-11111.
    [22] SUN Y, DING C, CHENG W, et al. Simultaneous adsorption and reduction of U (VI) on reduced graphene oxide-supported nanoscale zerovalent iron[J]. Journal of Hazardous Materials, 2014, 280:399-408.
    [23] 李政剑,石宝友, 苏宇,等.粉末活性炭粒径对水中菲吸附动力学的影响效应研究[J].环境科学学报, 2013, 33(1):67-72.

    LI Z J, SHI B Y, SU Y, et al. Effect of particle size on adsorption kinetics of phenanthrene in water by powered activated carbon[J].Acta Scientiae Circumstantiae, 2013, 33(1):67-72(in Chinese).

    [24] WANG Z, LIU G, ZHENG H, et al. Investigating the mechanisms of biochar's removal of lead from solution[J]. Bioresource Technology, 2015, 177:308-317.
    [25] LANGMUIR I. The constitution and fundamental properties of solids and liquids. Ⅱ. Liquids[J]. Journal of the American Chemical Society, 1917, 39(9):1848-1906.
    [26] FREUNDLICH H. Vber die adsorption in lösungen, zeitschrift für physikalische chemie[J]. American Chemical Society, 1906, 62(5):121-125.
    [27] TEMKIN M, PYZHEVV. Recent modifications to Langmuir isotherms[J]. ActaPhysiochim,URSS, 1940, 12:217-222.
    [28] DUBININ MM, RADUSHKEVICH LV. The equation of the characteristic curve of activated charcoal[J]. Proc Acad Sci USSR Phys Chem Sect,1947, 55:331-337.
    [29] HALL K R, EAGLETON L C, ACRIVOS A, et al. Pore-and solid-diffusion kinetics in fixed-bed adsorption under constant-pattern Conditions[J]. Industrial Engineering Chemistry Fundamentals, 1966, 5(2):212-223.
    [30] 马杰, 虞琳琳, 金路, 等. 改性碳纳米管原始样品吸附亚甲基蓝的性能研究[J].环境化学, 2012, 31(5):646-652.

    MA J, YU L L, JIN L, et al. Adsorption of methylene blue on the modified as-prepared carbon nanotubes[J]. Environmental Chemistry, 2012, 31(5):646-652(in Chinese).

    [31] 何玉凤, 王燕, 张振花, 等. 膨润土基共聚复合物的制备及对亚甲基蓝的脱色性能[J].环境化学, 2013, 32(8):1154-1159.

    HE Y F, WANG Y, ZHANG Z H, et al. Preparation of bentonite-copolymer composite and its decolorizing performances in removing methylene-blue[J]. Environmental Chemistry, 2013, 32(8):1154-1159(in Chinese).

    [32] VARGAS A M M, CAZETTA A L, KUNITA M H, et al. Adsorption of methylene blue on activated carbon produced from flamboyantpods (Delonixregia):Study of adsorption isotherms and kinetic models[J]. Chemical Engineering Journal, 2011, 168:722-730.
    [33] ZHU S, FANG S, HUO M, et al. A novel conversion of the groundwater treatment sludge to magnetic particles for the adsorption of methylene blue[J]. Journal Hazardous Materials, 2015,292:173-179.
  • 加载中
计量
  • 文章访问数:  1347
  • HTML全文浏览数:  1192
  • PDF下载数:  260
  • 施引文献:  0
出版历程
  • 收稿日期:  2017-05-04
  • 刊出日期:  2018-01-15
姚时, 张鸣帅, 李林璇, 廖云开, 周娜, 范世锁, 唐俊. 茶渣负载纳米四氧化三铁复合材料制备及其对亚甲基蓝的吸附机理[J]. 环境化学, 2018, 37(1): 96-107. doi: 10.7524/j.issn.0254-6108.2017050401
引用本文: 姚时, 张鸣帅, 李林璇, 廖云开, 周娜, 范世锁, 唐俊. 茶渣负载纳米四氧化三铁复合材料制备及其对亚甲基蓝的吸附机理[J]. 环境化学, 2018, 37(1): 96-107. doi: 10.7524/j.issn.0254-6108.2017050401
YAO Shi, ZHANG Mingshuai, LI Linxuan, LIAO Yunkai, ZHOU Na, FAN Shisuo, TANG Jun. Preparation of tea waste-nano Fe3O4 composite and its removal mechanism of methylene blue from aqueous solution[J]. Environmental Chemistry, 2018, 37(1): 96-107. doi: 10.7524/j.issn.0254-6108.2017050401
Citation: YAO Shi, ZHANG Mingshuai, LI Linxuan, LIAO Yunkai, ZHOU Na, FAN Shisuo, TANG Jun. Preparation of tea waste-nano Fe3O4 composite and its removal mechanism of methylene blue from aqueous solution[J]. Environmental Chemistry, 2018, 37(1): 96-107. doi: 10.7524/j.issn.0254-6108.2017050401

茶渣负载纳米四氧化三铁复合材料制备及其对亚甲基蓝的吸附机理

  • 1. 安徽农业大学资源与环境学院, 合肥, 230036
基金项目:

国家自然科学基金(51609001),安徽农业大学人才稳定项目(yj2015-23)和大学生创新项目(201710364055)资助.

摘要: 采用化学沉淀法将Fe3O4纳米颗粒负载到茶渣(tea waste,TW)上,之后对TW-Fe3O4复合材料进行表征,并研究其对典型染料废水亚甲基蓝(MB)的去除效果及机理.结果表明,固液比为4.0 g·L-1,pH6.92)未调整,接触时间为120 min,TW-Fe3O4对亚甲基蓝去除率可达98.70%.拟二级动力学模型可较好描述TW-Fe3O4吸附亚甲基蓝的过程.TW-Fe3O4复合材料对亚甲基蓝的去除可分为快吸附和慢吸附两个阶段.Langmuir、Temkin和Dubinin-Radushkevich模型均能较好拟合吸附过程.Langmuir拟合得到的最大饱和吸附量为84.47 mg·g-1.3次吸附-解吸循环实验之后,发现TW-Fe3O4对MB去除效果有限,表明结合较为稳定.TW-Fe3O4对MB的吸附机理涉及静电作用、离子交换、氢键作用、π-π堆积等.动力学、FTIR和XPS分析显示茶渣的表面官能团在吸附中能发挥重要作用.因此,TW-Fe3O4复合材料有作为染料污染废水修复剂的潜力,且能较为方便的从溶液中分离.

English Abstract

参考文献 (33)

返回顶部

目录

/

返回文章
返回