茶渣负载纳米四氧化三铁复合材料制备及其对亚甲基蓝的吸附机理
Preparation of tea waste-nano Fe3O4 composite and its removal mechanism of methylene blue from aqueous solution
-
摘要: 采用化学沉淀法将Fe3O4纳米颗粒负载到茶渣(tea waste,TW)上,之后对TW-Fe3O4复合材料进行表征,并研究其对典型染料废水亚甲基蓝(MB)的去除效果及机理.结果表明,固液比为4.0 g·L-1,pH6.92)未调整,接触时间为120 min,TW-Fe3O4对亚甲基蓝去除率可达98.70%.拟二级动力学模型可较好描述TW-Fe3O4吸附亚甲基蓝的过程.TW-Fe3O4复合材料对亚甲基蓝的去除可分为快吸附和慢吸附两个阶段.Langmuir、Temkin和Dubinin-Radushkevich模型均能较好拟合吸附过程.Langmuir拟合得到的最大饱和吸附量为84.47 mg·g-1.3次吸附-解吸循环实验之后,发现TW-Fe3O4对MB去除效果有限,表明结合较为稳定.TW-Fe3O4对MB的吸附机理涉及静电作用、离子交换、氢键作用、π-π堆积等.动力学、FTIR和XPS分析显示茶渣的表面官能团在吸附中能发挥重要作用.因此,TW-Fe3O4复合材料有作为染料污染废水修复剂的潜力,且能较为方便的从溶液中分离.
-
关键词:
- 茶渣负载纳米Fe3O4复合材料 /
- 亚甲基蓝 /
- 吸附动力学 /
- 吸附等温线 /
- 表面官能团
Abstract: Nano Fe3O4 was loaded onto tea waste to prepare TW-Fe3O4 composite using chemical precipitation method. The composite was characterized by BET, SEM, TEM, XRD, FTIR, XPS, ICP, VSM, and was applied to investigate the removal effect and mechanism of methylene blue solution. The results indicated that the removal rate reached 98.70% when the dosage 4.0 g·L-1, the pH of MB solution was 6.92 and contact time was 2 h. The pseudo-second-order kinetic model well described the adsorption process of methylene blue into TW-Fe3O4 composite. The adsorption process could be divided into two stages:fast adsorption stage and slow adsorption stage. Langmuir, Temkin, Dubinin-Radushkevich well fit the adsorption isotherm process. The adsorption capacity of MB was 84.47 mg·g-1 based on Langmuir fitting. After three cycles of adsorption and desorption process, the removal effect of TW-Fe3O4 composite was limited, suggesting the adsorption was stable and the process would not cause secondary pollution. The mechanism between TW-Fe3O4 and MB involved ion exchange, hydrogen bonding, π-π interaction, electrostatic interaction, etc. Surface functional groups of TW-Fe3O4 composite played an important role during the adsorption process based on kinetics, FTIR, XPS analysis. Therefore, TW-Fe3O4 composite possesses the potential to act as an adsorbent to remove dyeing wastewater and could be easily separated from the aqueous solution. -
-
[1] FORGACS E, CSERHATI T, OROS G. Removal of synthetic dyes from wastewaters:A review[J]. Environment International, 2004, 30(7):953-971. [2] ROBINSON T, MCMULLAN G, MARCHANT R, et al. Remediation of dyes in textile effluent:A critical review on current treatment technologies with a proposed alternative[J]. Bioresource Technology, 2001, 77(3):247-255. [3] LIU J F, ZHAO Z, JIANG G. Coating Fe3O4 magnetic nanoparticles with humic acid for high efficient removal of heavy metals in water[J]. Environmental Science Technology, 2008, 42(18):6949-6954. [4] 常青,江国栋,胡梦璇,等. 石墨烯基磁性复合材料吸附水中亚甲基蓝的研究[J].环境科学,2014,35(5):1804-1809. CHANG Q, JIANG G D, HU M X, et al. Adsorption of methylene blue from aqueous solution onto magnetic Fe3O4/graphene oxide nanoparticles[J]. Environmental Science, 2014, 35(5):1804-1809(in Chinese).
[5] 林青雯,赵琪,高梦凡,等. Fe3O4/纤维素纳米复合材料的制备及其对亚甲基蓝的吸附[J]. 环境工程学报, 2016, 10(11):6451-6456. LIN Q W, ZHAO Q, GAO M F, et al. reparation of Fe3O4/cellulose nanocomposites and its adsorption to methylene blue[J]. Chinese Journal of Environmental Engineering, 2016, 10(11):6451-6456(in Chinese).
[6] 张佳, 任秉雄, 王鹏, 等. 山茶籽粉吸附亚甲基蓝的性能研究[J].环境化学, 2013, 32(8):1539-1545. ZHANG J, REN B X, WANG P, et al. Mechanistic study on adsorption of methylene blue on tea seed powder[J]. Environmental Chemistry, 2013, 32(8):1539-1545(in Chinese).
[7] FAN S, WANG Y, LI Y, et al. Facile synthesis of tea waste/Fe3O4 nanoparticle composite for hexavalent chromium removal from aqueous solution[J]. RSC Advances, 2017, 7(13):7576-7590. [8] EBRAHIMIANPIRBAZARI A, SABERIKHAH E, GHOLAMI AHMAD GORABI N. Fe3O4 nanoparticles loaded onto wheat straw:An efficient adsorbent for Basic Blue 9 adsorption from aqueous solution[J]. Desalination and Water Treatment, 2016, 57(9):4110-4121. [9] PANNEERSELVAM P, MORAD N, TAN K A. Magnetic nanoparticle (Fe3O4) impregnated onto tea waste for the removal of nickel (Ⅱ) from aqueous solution[J]. Journal of Hazardous Materials, 2011, 186(1):160-168. [10] IOANNIDOU O, ZABANIOTOU A. Agricultural residues as precursors for activated carbon production-A review[J]. Renewable and Sustainable Energy Reviews, 2007, 11(9):1966-2005. [11] FAN S, TANG J, WANG Y, et al. Biochar prepared from co-pyrolysis of municipal sewage sludge and tea waste for the adsorption of methylene blue from aqueous solutions:Kinetics, isotherm, thermodynamic and mechanism[J]. Journal of Molecular Liquids, 2016, 220:432-441. [12] EROǧLU H, YAPICI S, NUHOǧLU Ç, et al. An environmentally friendly process:Adsorption of radionuclide Tl-201 on fibrous waste tea[J]. Journal of Hazardous Materials, 2009, 163(2):607-617. [13] ZHANG Q, HAN X, TANG B. Preparation of a magnetically recoverable biocatalyst support on monodisperse Fe3O4 nanoparticles[J]. RSC Advances, 2013, 3(25):9924-9931. [14] CHEN S Q, CHEN Y L, JIANG H. Slow pyrolysis magnetization of hydrochar for effective and highly stable removal of tetracycline from aqueous solution[J]. Industrial Engineering Chemistry Research, 2017, 56(11):3059-3066. [15] MILCZAREK G, CISZEWSKI A, STEPNIAK I. Oxygen-doped activated carbon fiber cloth as electrode material for electrochemical capacitor[J]. Journal of Power Sources, 2011, 196(18):7882-7885. [16] ZHAO L, BACCILE N, GROSS S, et al. Sustainable nitrogen-doped carbonaceous materials from biomass derivatives[J]. Carbon, 2010, 48(13):3778-3787. [17] YAMASHITA T, HAYES P. Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials[J]. Applied Surface Science, 2008, 254(8):2441-2449. [18] LAGERGREN S. About the theory of so-called adsorption of soluble substances[J]. K Sven Vetenskapsakad Handl, 1898, 24:1-39. [19] HO Y S, MCKAY G. Pseudo-second order model for sorption processes[J]. Process Biochemistry, 1999, 34(5):451-465. [20] CHIEN S H, CLAYTON W R. Application of Elovich equation to the kinetics of phosphate release and sorption in soils[J]. Soil Science Society of America Journal, 1980, 44(2):265-268. [21] CHEN Z, CHEN B, CHIOU C T. Fast and slow rates of naphthalene sorption to biochars produced at different temperatures[J]. Environmental Science Technology, 2012, 46(20):11104-11111. [22] SUN Y, DING C, CHENG W, et al. Simultaneous adsorption and reduction of U (VI) on reduced graphene oxide-supported nanoscale zerovalent iron[J]. Journal of Hazardous Materials, 2014, 280:399-408. [23] 李政剑,石宝友, 苏宇,等.粉末活性炭粒径对水中菲吸附动力学的影响效应研究[J].环境科学学报, 2013, 33(1):67-72. LI Z J, SHI B Y, SU Y, et al. Effect of particle size on adsorption kinetics of phenanthrene in water by powered activated carbon[J].Acta Scientiae Circumstantiae, 2013, 33(1):67-72(in Chinese).
[24] WANG Z, LIU G, ZHENG H, et al. Investigating the mechanisms of biochar's removal of lead from solution[J]. Bioresource Technology, 2015, 177:308-317. [25] LANGMUIR I. The constitution and fundamental properties of solids and liquids. Ⅱ. Liquids[J]. Journal of the American Chemical Society, 1917, 39(9):1848-1906. [26] FREUNDLICH H. Vber die adsorption in lösungen, zeitschrift für physikalische chemie[J]. American Chemical Society, 1906, 62(5):121-125. [27] TEMKIN M, PYZHEVV. Recent modifications to Langmuir isotherms[J]. ActaPhysiochim,URSS, 1940, 12:217-222. [28] DUBININ MM, RADUSHKEVICH LV. The equation of the characteristic curve of activated charcoal[J]. Proc Acad Sci USSR Phys Chem Sect,1947, 55:331-337. [29] HALL K R, EAGLETON L C, ACRIVOS A, et al. Pore-and solid-diffusion kinetics in fixed-bed adsorption under constant-pattern Conditions[J]. Industrial Engineering Chemistry Fundamentals, 1966, 5(2):212-223. [30] 马杰, 虞琳琳, 金路, 等. 改性碳纳米管原始样品吸附亚甲基蓝的性能研究[J].环境化学, 2012, 31(5):646-652. MA J, YU L L, JIN L, et al. Adsorption of methylene blue on the modified as-prepared carbon nanotubes[J]. Environmental Chemistry, 2012, 31(5):646-652(in Chinese).
[31] 何玉凤, 王燕, 张振花, 等. 膨润土基共聚复合物的制备及对亚甲基蓝的脱色性能[J].环境化学, 2013, 32(8):1154-1159. HE Y F, WANG Y, ZHANG Z H, et al. Preparation of bentonite-copolymer composite and its decolorizing performances in removing methylene-blue[J]. Environmental Chemistry, 2013, 32(8):1154-1159(in Chinese).
[32] VARGAS A M M, CAZETTA A L, KUNITA M H, et al. Adsorption of methylene blue on activated carbon produced from flamboyantpods (Delonixregia):Study of adsorption isotherms and kinetic models[J]. Chemical Engineering Journal, 2011, 168:722-730. [33] ZHU S, FANG S, HUO M, et al. A novel conversion of the groundwater treatment sludge to magnetic particles for the adsorption of methylene blue[J]. Journal Hazardous Materials, 2015,292:173-179. -

计量
- 文章访问数: 1347
- HTML全文浏览数: 1192
- PDF下载数: 260
- 施引文献: 0