-
近几年,我国空气质量已有明显改善,但臭氧浓度却总体呈缓慢上升态势,已成为仅次于PM2.5的重要污染物。挥发性有机物(volatile organic compounds,VOCs)不仅是臭氧和PM2.5形成的重要前体物[1-2],而且会对人群健康产生危害[3-5]。制药行业是我国六大污染行业之一,该行业VOCs的排放具有排放总量大,排放环节复杂,治理成本高等问题[6-7]。因此,制药行业VOCs的精准减排问题已成为研究热点。
制药工业分为发酵类、化学合成类、中药类、提取类、生物工程和混装制剂类6类[8]。其中,发酵类制药工业和化学合成类制药工业生产时VOCs的排放量最大。目前,已有研究者对制药行业排放源开展了研究。何华飞等[9]发现,制药工业废气中的主要VOCs污染物均为丙酮;HE等[10]的研究表明,丙酮在不同的制药阶段(包括生产、废水处理和离心)产生的污染物中都占很高的比例(>50%);CHENG等[7]发现,芳烃、卤烃和 OVOCs 对总VOCs的贡献最大;韩博等[11]对天津市生产头孢类中间产品企业进行了分析,发现在制药源工艺废气的成分谱中,甲苯的比例高达79.1%。此外还存在少量的其他苯系物,包括苯(5.6%)、总二甲苯(5.4%)、乙苯(5%)等。律国黎等[12]针对4种典型产品(青霉素、维生素C、阿莫西林和头孢)的研究表明,周界环境空气中的VOCs以丙酮、1,3,5-三甲苯、1,3-丁二烯及二甲苯为主。周子航等[13]对3家成都市化学合成制药类企业进行采样分析,结果显示,最主要的 VOCs贡献组分为 OVOCs,占VOCs总排放的 50% 以上。邵弈欣等[14] 在华东地区某化工园区2家化学合成类制药企业的个别生产环节中发现,化学合成类制药企业个别生产环节芳香烃排放的占比非常大,结合材料、工段等信息,推测占比较高的甲苯来源于该药企所使用的原料或生成于生产过程中发生的化学反应。综上所述,制药行业采用不同工艺时,以及在不同的生产环节,所释放的VOCs 种类各异。
VOCs末端治理技术主要分为两大类:一类是回收技术,如吸附法、吸收法、冷凝法等;另一类则是销毁技术,如燃烧法、光氧催化、低温等离子法等。目前,单一的治理技术难以达到净化废气的要求[15-18]。在制药工业VOCs处理中,各种治理技术处理效率不同,适用范围也有很大差别[14, 19-23],但针对不同组合技术的处理效率评估方法较为匮乏,且提高不同组合技术净化效果是制药行业VOCs精准减排的关键。
山东省淄博市是我国传统的重工业城市。该市医药行业以发酵类制药和化学合成类制药为主,生产的产品主要包括头孢类抗生素、布洛芬、阿司匹林等。根据《城市大气挥发性有机化合物(VOCs)监测技术指南(试行)》提出的“以56种VOCs(PAMs)作为城市常规监测的目标化合物”的建议,本研究选取淄博市2类典型制药企业,对不同产品、不同工艺过程的中产生的VOCs 样品进行采集与分析,通过识别不同产品、不同环节PAMs的 排放特征,以非甲烷总烃(NMHC)表征VOCs总体排放情况来评估不同废气处理方式对VOCs排放的影响,以期为淄博市空气污染的精准管控提供参考。
Comparison of emission characteristics and treatment technologies of VOCs in typical pharmaceutical enterprises
- Received Date: 30/11/2021
- Available Online: 31/07/2022
-
Key words:
- pharmaceutical industry /
- volatile organic compounds /
- emission characteristics /
- emission factor /
- purification efficiency
Abstract: In order to obtain VOCs (Volatile Organic Compounds) emission characteristics of different products in different processes of pharmaceutical industries, and to evaluate the impact of different treatment technologies on VOCs emission, two typical pharmaceutical enterprises in Zibo City, Shandong Province were taken as the research objects in this study. VOCs samples of different processes and different treatment technologies were collected and analyzed and the similarity of photochemical assessment monitoring stations (PAMs) source spectra of different emission stages were compared using the divergence coefficient method. The overall emission of VOCs was characterized by non-methane hydrocarbon (NMHC) The emission factors of pharmaceutical industry were calculated by means of field measurement. The effects of different waste gas treatment technologies on VOCs emissions were evaluated by using the index of purification efficiency. The results showed that the average VOCs emission factor of typical enterprise A and B in Zibo pharmaceutical industry was 1.56 g∙kg−1, which was 1/ 276 of the limit value of Technical Guide for Compilation of Atmospheric Voc Source Emission Inventory. There were significant differences in PAMs emission characteristics among different processes. Aromatic hydrocarbons and alkane were the main PAMs discharged by fermentation enterprises. After RTO treatment, the proportion of aromatic hydrocarbon species increased from 49% to 58%, while the proportion of other species decreased. However, after water spraying +UV photooxygen treatment, the proportion of alkane species decreased from 75% to 69%, and the proportion of other species increased. The PAMs discharged by chemical synthesis enterprises were mainly alkanes, and the proportion of each species had almost no change after the treatment of condensation, water spraying +UV photooxygen and activated carbon adsorption. Different treatment technologies have different purification efficiency for different kinds of PAMs. UV photooxygen + water spray is more suitable for the removal of VOCs and odor in sewage stations, and RTO is more suitable for the removal of VOCs with higher concentration.