[1]
|
陈显赫, 吴春锋, 张海涛. 氟斑牙研究现状[J]. 中国地方病防治, 2020, 35(3): 208-211.
Google Scholar
Pub Med
|
[2]
|
聂文博, 郭敏, 李林霜, 等. 高氟水处理吸附剂的研究进展[J]. 广州化工, 2015, 43(20): 1-6. doi: 10.3969/j.issn.1001-9677.2015.20.001
CrossRef Google Scholar
Pub Med
|
[3]
|
ALI S, THAKUR S K, SARKAR A, et al. Worldwide contamination of water by fluoride[J]. Environmental Chemistry Letters, 2016, 14(3): 291-315. doi: 10.1007/s10311-016-0563-5
CrossRef Google Scholar
Pub Med
|
[4]
|
马勇, 刘东阳, 陈慧英, 等. 介电泳增强吸附法去除饮用水中的氟离子[J]. 环境工程学报, 2020, 14(5): 1245-1251. doi: 10.12030/j.cjee.201907102
CrossRef Google Scholar
Pub Med
|
[5]
|
AGHAPOUR S, BINA B, TARRAHI M J, et al. Distribution and health risk assessment of natural fluoride of drinking groundwater resources of Isfahan, Iran, using GIS[J]. Environmental Monitoring and Assessment, 2018, 190(3): 137. doi: 10.1007/s10661-018-6467-z
CrossRef Google Scholar
Pub Med
|
[6]
|
LAXMANKUMAR D, SATYANARAYANA E, DHAKATE R, et al. Hydrogeochemical characteristics with respect to fluoride contamination in groundwater of Maheshwarm Mandal, RR District, Telangana State, India[J]. Groundwater for Sustainable Development, 2019, 8: 474-483. doi: 10.1016/j.gsd.2019.01.008
CrossRef Google Scholar
Pub Med
|
[7]
|
涂成龙, 何令令, 崔丽峰, 等. 氟的环境地球化学行为及其对生态环境的影响[J]. 应用生态学报, 2019, 30(1): 21-29. doi: 10.13287/j.1001-9332.201901.004
CrossRef Google Scholar
Pub Med
|
[8]
|
郝春明, 张伟, 何瑞敏, 等. 神东矿区高氟矿井水分布特征及形成机制[J]. 煤炭学报, 2021, 46(6): 1966-1977. doi: 10.13225/j.cnki.jccs.ST21.0160
CrossRef Google Scholar
Pub Med
|
[9]
|
陈媛, 熊传龙, 张琦, 等. 氟中毒暴露途径及健康效应研究进展[J]. 环境与健康杂志, 2016, 33(1): 84-87. doi: 10.16241/j.cnki.1001-5914.2016.01.024
CrossRef Google Scholar
Pub Med
|
[10]
|
OZSVATH D L. Fluoride and environmental health: A review[J]. Reviews in Environmental Science and Bio/Technology, 2008, 8(1): 59-79.
Google Scholar
Pub Med
|
[11]
|
赵迎新, 宋倩, 马同宇, 等. 改性/新型氟吸附材料的研究进展[J]. 工业水处理, 2018, 38(5): 9-14. doi: 10.11894/1005-829x.2018.38(5).009
CrossRef Google Scholar
Pub Med
|
[12]
|
王俊兰, 魏海红, 毕雯雯. 浅析山东省胶莱盆地地方性氟中毒与地质环境的关系[J]. 山东国土资源, 2013, 29(9): 103-105. doi: 10.3969/j.issn.1672-6979.2013.09.025
CrossRef Google Scholar
Pub Med
|
[13]
|
刘春华, 王威, 杨丽芝, 等. 山东省地下水氟富集规律及其驱动机制[J]. 地质学报, 2021, 95(6): 1962-1972. doi: 10.3969/j.issn.0001-5717.2021.06.020
CrossRef Google Scholar
Pub Med
|
[14]
|
君珊, 张博, 王鹏飞, 等. 呼伦湖水体氟化物演变特征及其影响因素[J]. 环境科学研究, 2021, 34(4): 841-848. doi: 10.13198/j.issn.1001-6929.2021.02.08
CrossRef Google Scholar
Pub Med
|
[15]
|
段平洲, 贾晓波, 后希康, 等. 磁性铝基MOF的表征和对水体中氟化物吸附性能研究[J]. 环境科学研究, 2021, 34(5): 1139-1147. doi: 10.13198/j.issn.1001-6929.2020.10.25
CrossRef Google Scholar
Pub Med
|
[16]
|
陈乐, 王晓丽. 内蒙古部分河段表层沉积物对氟的吸附特征[J]. 土壤通报, 2019, 50(6): 1478-1483. doi: 10.19336/j.cnki.trtb.2019.06.29
CrossRef Google Scholar
Pub Med
|
[17]
|
KHATIBIKAMAL V, TORABIAN A, JANPOOR F, et al. Fluoride removal from industrial wastewater using electrocoagulation and its adsorption kinetics[J]. Journal of Hazardous Materials, 2010, 179(1/2/3): 276-280.
Google Scholar
Pub Med
|
[18]
|
陈东. 饮用水除氟技术研究综述[J]. 山东化工, 2021, 50(2): 261-262. doi: 10.3969/j.issn.1008-021X.2021.02.104
CrossRef Google Scholar
Pub Med
|
[19]
|
段誉梅, 潘洪义. 水葫芦对氟化物的净化效果及生理特性变化[J]. 北方园艺, 2018(2): 90-96. doi: 10.11937/bfyy.20171617
CrossRef Google Scholar
Pub Med
|
[20]
|
尹国勋, 郑明凯, 朱利霞. CaO+KH2PO4在高氟地下水水质处理中的应用[J]. 水资源保护, 2007(4): 82-84. doi: 10.3969/j.issn.1004-6933.2007.04.022
CrossRef Google Scholar
Pub Med
|
[21]
|
李雪玲, 刘俊峰, 李培元. 石灰沉淀法除氟的应用[J]. 水处理技术, 2000(6): 359-361. doi: 10.3969/j.issn.1000-3770.2000.06.012
CrossRef Google Scholar
Pub Med
|
[22]
|
邓慧东, 李大炳, 康绍辉, 等. 用碳酸钙从碱性含氟废水中置换除氟[J]. 铀矿冶, 2021, 40(4): 317-320. doi: 10.13426/j.cnki.yky.2021.04.010
CrossRef Google Scholar
Pub Med
|
[23]
|
BIER T H A. Influence of type of cement and curing on carbonation progress and pore structure of hydrated cement pastes[J]. MRS Proceedings, 2011, 85: 123.
Google Scholar
Pub Med
|
[24]
|
曹艳, 任勇翔, 黄廷林, 等. 水化普通硅酸盐水泥吸附水中氟化物的动力学与热力学解析[J]. 环境科学研究, 2012, 25(2): 200-206. doi: 10.13198/j.res.2012.02.78.caoy.009
CrossRef Google Scholar
Pub Med
|
[25]
|
任勇翔, 钱壮, 赵春玲, 等. 热活化水化高铝水泥颗粒吸附氟化物行为研究[J]. 建筑材料学报, 2020, 23(2): 421-429.
Google Scholar
Pub Med
|
[26]
|
TARALI S V, HOOLIKANTIMATH N P, KULKARNI N, et al. A novel cement-based technology for the treatment of fluoride ions[J]. Sn Applied Sciences, 2020, 2(7): 1205. doi: 10.1007/s42452-020-2986-7
CrossRef Google Scholar
Pub Med
|
[27]
|
KANG W H, KIM E I, PARK J Y. Fluoride removal capacity of cement paste[J]. Desalination, 2007, 202(1/2/3): 38-44.
Google Scholar
Pub Med
|
[28]
|
LIU L, LIU B H, LI W, et al. An effective way to treat the iron-rich acid mine drainage from coal mining in Guizhou's mountainous areas[J]. Journal of Mountain Science, 2020, 17(6): 1345-1359. doi: 10.1007/s11629-020-5998-2
CrossRef Google Scholar
Pub Med
|
[29]
|
LIU B H, LIU L, LI W. Effective removal of phosphorus from eutrophic water by using cement[J]. Environmental Research, 2020, 183: 109218. doi: 10.1016/j.envres.2020.109218
CrossRef Google Scholar
Pub Med
|
[30]
|
李洋, 张玄, 张丽君, 等. 白洋淀氟化物污染、迁移规律及其治理对策研究[J]. 节能, 2019, 38(3): 74-76. doi: 10.3969/j.issn.1004-7948.2019.03.025
CrossRef Google Scholar
Pub Med
|
[31]
|
贾春伟, 王振厅, 时青. 青岛南胶莱河流域干流设计洪水计算分析[J]. 山东水利, 2021(1): 25-26. doi: 10.16114/j.cnki.sdsl.2021.01.009
CrossRef Google Scholar
Pub Med
|
[32]
|
温元波, 张陆军, 王宁宁, 等. 水化氯铝酸钙去除水中氟及其动力学研究[J]. 应用化工, 2021, 50(2): 311-315. doi: 10.3969/j.issn.1671-3206.2021.02.008
CrossRef Google Scholar
Pub Med
|
[33]
|
贾翠萍, 杨梦圆, 薛鑫. Ca-Fe-Mg复合材料制备及其对矿区高氟水氟去除性能研究[J]. 中国矿业, 2018, 27(9): 158-161. doi: 10.12075/j.issn.1004-4051.2018.09.024
CrossRef Google Scholar
Pub Med
|
[34]
|
郭朝斌, 孙婷婷, 郑炎松, 等. 改性灰岩除氟的实验研究[J]. 环境科学与技术, 2011, 34(8): 89-94. doi: 10.3969/j.issn.1003-6504.2011.08.020
CrossRef Google Scholar
Pub Med
|
[35]
|
李林. 塔里木河流域地表水和地下水的转化关系[J]. 水土保持通报, 2021, 41(6): 23-28. doi: 10.13961/j.cnki.stbctb.2021.06.004
CrossRef Google Scholar
Pub Med
|
[36]
|
王而力, 王晓锋, 钱凤国, 等. 氟化钙晶核在处理低浓度含氟废水中的作用[J]. 辽宁城乡环境科技, 2001(1): 21-24.
Google Scholar
Pub Med
|
[37]
|
付国燕, 王玮玮, 刘召波, 等. 氢氧化物沉淀法制备层状结构氧化钪的研究[J]. 材料导报, 2020, 34(S2): 1164-1167.
Google Scholar
Pub Med
|
[38]
|
程浩铭, 张翠玲, 任昊晔, 等. 化学沉淀法处理高氟废水的工艺条件优化[J]. 兰州交通大学学报, 2018, 37(5): 80-84. doi: 10.3969/j.issn.1001-4373.2018.05.014
CrossRef Google Scholar
Pub Med
|
[39]
|
沈青. 地表水中藻类代谢对pH和含氧量影响分析[J]. 环境科学与技术, 2011, 34(S2): 261-262.
Google Scholar
Pub Med
|
[40]
|
姜科, 周康根, 李程文. 粒径对CaF2沉淀-溶解平衡的影响[J]. 中国有色金属学报, 2011, 21(12): 3195-3201.
Google Scholar
Pub Med
|
[41]
|
邓磊, 蔡攀. XRD分析在出厂水泥质量控制中的应用[J]. 水泥, 2019(S1): 115-117. doi: 10.13739/j.cnki.cn11-1899/tq.2019.S1.036
CrossRef Google Scholar
Pub Med
|
[42]
|
梁晓杰. 碳酸化对普通硅酸盐水泥水化性能的影响[J]. 水泥工程, 2021(3): 1-4. doi: 10.13697/j.cnki.32-1449/tu.2021.03.001
CrossRef Google Scholar
Pub Med
|
[43]
|
王亚琛, 陈小亮, 朱南文, 等. 复合水泥对MBR工艺渗滤液尾水深度处理的协同效应[J]. 净水技术, 2013, 32(2): 30-35. doi: 10.3969/j.issn.1009-0177.2013.02.007
CrossRef Google Scholar
Pub Med
|
[44]
|
GARCIA-GONZALEZ C A, HIDALGO A, ANDRADE C, et al. Modification of composition and microstructure of portland cement pastes as a result of natural and supercritical carbonation procedures[J]. Industrial & Engineering Chemistry Research, 2006, 45(14): 4985-4992.
Google Scholar
Pub Med
|
[45]
|
MO L W, PANESAR D K. Effects of accelerated carbonation on the microstructure of portland cement pastes containing reactive MgO[J]. Cement and Concrete Research, 2012, 42(6): 769-777. doi: 10.1016/j.cemconres.2012.02.017
CrossRef Google Scholar
Pub Med
|
[46]
|
BORGES P H R, COSTA J O, MILESTONE N B, et al. Carbonation of CH and C-S-H in composite cement pastes containing high amounts of BFS[J]. Cement and Concrete Research, 2010, 40(2): 284-292. doi: 10.1016/j.cemconres.2009.10.020
CrossRef Google Scholar
Pub Med
|
[47]
|
张博, 郭云艳, 陈俊伊, 等. 岱海沉积物氟化物赋存特征及其释放风险[J]. 中国环境科学, 2020, 40(04): 1748-1756. doi: 10.3969/j.issn.1000-6923.2020.04.043
CrossRef Google Scholar
Pub Med
|
[48]
|
SKJELKVALE B L. Factors influencing fluoride concentrations in norwegian lakes[J]. Water Air and Soil Pollution, 1994, 77(1/2): 151-167.
Google Scholar
Pub Med
|
[49]
|
于波, 任桐, 都兴红, 等. 含氟废水处理工艺研究[J]. 中国资源综合利用, 2020, 38(11): 192-195. doi: 10.3969/j.issn.1008-9500.2020.11.056
CrossRef Google Scholar
Pub Med
|
[50]
|
YANG M, HASHIMOTO T, HOSHI N, et al. Fluoride removal in a fixed bed packed with granular calcite[J]. Water Research, 1999, 33(16): 3395-3402. doi: 10.1016/S0043-1354(99)00052-4
CrossRef Google Scholar
Pub Med
|
[51]
|
WU S B, ZHANG K S, HE J Y, et al. High efficient removal of fluoride from aqueous solution by a novel hydroxyl aluminum oxalate adsorbent[J]. Journal of Colloid and Interface Science, 2016, 464: 238-245. doi: 10.1016/j.jcis.2015.10.045
CrossRef Google Scholar
Pub Med
|
[52]
|
王敬尊, 王霆. 如何解释红外谱图[J]. 大学化学, 2016, 31(6): 90-97. doi: 10.3866/pku.DXHX201504001
CrossRef Google Scholar
Pub Med
|
[53]
|
WANG H L, LIU H B, XIE J J, et al. An insight into the carbonation of calcined clayey dolomite and its performance to remove Cd (II)[J]. Applied Clay Science, 2017, 150: 63-70. doi: 10.1016/j.clay.2017.09.012
CrossRef Google Scholar
Pub Med
|
[54]
|
王凌凯, 陈冬, 刘海波, 等. 碳酸化对白云石热分解产物联合除磷除氟的影响[J]. 硅酸盐通报, 2021, 40(9): 3053-3063. doi: 10.16552/j.cnki.issn1001-1625.20210604.004
CrossRef Google Scholar
Pub Med
|
[55]
|
童庆, 徐慧, 樊华, 等. Al13改性羟基磷灰石的除氟性能研究[J]. 环境科学学报, 2021, 41(7): 2748-2757.
Google Scholar
Pub Med
|