2021 Volume 40 Issue 3
Article Contents

QIAN Ziyan, WU Chuan, HE Xuan, XUE Shengguo. Study on the influence of iron redox cycling microorganisms on heavy metals in the environment[J]. Environmental Chemistry, 2021, (3): 834-850. doi: 10.7524/j.issn.0254-6108.2020050901
Citation: QIAN Ziyan, WU Chuan, HE Xuan, XUE Shengguo. Study on the influence of iron redox cycling microorganisms on heavy metals in the environment[J]. Environmental Chemistry, 2021, (3): 834-850. doi: 10.7524/j.issn.0254-6108.2020050901

Study on the influence of iron redox cycling microorganisms on heavy metals in the environment

  • Corresponding author: WU Chuan, wuchuan@csu.edu.cn
  • Received Date: 09/05/2020
    Fund Project: Supported by National Natural Science Foundation of China (41771512).
  • Iron redox cycling microorganisms include Fe(Ⅱ)-oxidizing bacteria and Fe(Ⅲ)-reducing bacteria. The oxidation (or reduction) of Fe2+(or Fe3+) mediated by these microorganisms is usually accompanied by the migration and transformation of a series of heavy metal elements, which plays an important role in influencing the bioavailability and mobility of heavy metals in the environment. This paper reviewed the iron redox cycling microorganisms in the environment, and discussed the mechanism of iron redox cycling microorganisms driving heavy metal migration and transformation from the following aspects:immobilization of heavy metals by iron minerals produced by iron oxidizing bacteria; reduction and dissolution of iron minerals and formation of secondary minerals mediate by iron-reducing bacteria; and microbial metabolism of iron redox cycling microorganisms coupled with heavy metal speciation transformation. Furthermore, the remediation potential of iron redox cycling microorganisms on heavy metals such as arsenic, cadmium, chromium, copper and lead in the environment were summarized through research examples. Future research can focus on the biomineralization mechanism of specific microorganisms, regulation of heavy metal remediation by biomineralization, and the application of iron redox cycling microorganisms in remediation of heavy metal contaminated sites. This paper aims to provide theoretical and application basis for remediation of heavy metal pollution based on iron redox cycling microorganisms.
  • 加载中
  • [1] 周建军,周桔,冯仁国. 我国土壤重金属污染现状及治理战略[J]. 中国科学院院刊,2014,29(3):315-320. ZHOU J J, ZHOU J, FENG R G. The current situation of soil heavy metal pollution in China and its control strategy[J]. Bulletin of Chinese Academy of Sciences, 2014, 29(3):315-320(in Chinese).

    Google Scholar Pub Med

    [2] CHEN W, ZHANG J, ZHANG X, et al. Investigation of heavy metal (Cu, Pb, Cd, and Cr) stabilization in river sediment by nano-zero-valent iron/activated carbon composite[J]. Environmental Science and Pollution Research, 2016, 23(2):1460-1470.

    Google Scholar Pub Med

    [3] 林超峰,龚骏. 嗜中性微好氧铁氧化菌研究进展[J]. 生态学报,2012,32(18):5889-5899. LIN C F, GONG J. Recent progress in research on neutrophilic, microaerophilic iron(Ⅱ)-oxidizing bacteria[J]. Acta Ecologica Sinica, 2012, 32(18):5889-5899(in Chinese).

    Google Scholar Pub Med

    [4] 张萌,郑平,季军远. 厌氧铁氧化菌研究进展[J]. 应用生态学报,2013,24(8):2377-2382. ZHANG M, ZHENG P, JI J Y. Research advances on anaerobic ferrous-oxidizing microorganisms[J]. Chinese Journal of Applied Ecology, 2013, 24(8):2377-2382(in Chinese).

    Google Scholar Pub Med

    [5] EMERSON D, FLEMING E J, MCBETH J M. Iron-oxidizing bacteria:an environmental and genomic perspective[J]. Annual Review of Microbiology, 2010, 64(1):561-583.

    Google Scholar Pub Med

    [6] KUCERA S, WOLFE R S. A selective enrichment method for Gallionella ferruginea[J]. Journal of Bacteriology, 1957, 74(3):344-349.

    Google Scholar Pub Med

    [7] EMERSON D, MOYER C L. Isolation and characterization of novel iron-oxidizing bacteria that grow at circumneutral pH[J]. Applied & Environmental Microbiology, 1998, 63(12):4784-4792.

    Google Scholar Pub Med

    [8] WIDDEL F, SCHNELL S, HEISING S, et al. Ferrous iron oxi-dation by anoxygenic phototrophic bacteria[J]. Nature, 1993, 362:834-835.

    Google Scholar Pub Med

    [9] JIAO Y, KAPPLER A, CROAL L R, et al. Isolation and characterization of a genetically tractable photoautotrophic Fe(Ⅱ)-oxidizing bacterium, Rhodopseudomonas palustris strain TIE-1[J]. Applied & Environmental Microbiology, 2005, 71(8):4487-4496.

    Google Scholar Pub Med

    [10] POULAIN A J, NEWMAN D K. Rhodobacter capsulatus catalyzes light-dependent Fe(Ⅱ) oxidation under anaerobic conditions as a potential detoxification mechanism[J]. Applied & Environmental Microbiology, 2009, 75(21):6639-6646.

    Google Scholar Pub Med

    [11] EHRENREICH A, WIDDEL F. Anaerobic oxidation of ferrous iron by purple bacteria, a new type of phototrophic[J]. Applied & Environmental Microbiology, 1994, 60(12):427-483.

    Google Scholar Pub Med

    [12] STRAUB K L, SCHONHUBER W A, BUCHHOLZCLEVEN B E E, et al. Diversity of ferrous iron-oxidizing, nitrate-reducing bacteria and their involvement in oxygen-independent iron cycling[J]. Geomicrobiology Journal, 2004, 21(6):371-378.

    Google Scholar Pub Med

    [13] KAPPLER A, SCHINK B, NEWMAN D K. Fe(Ⅲ) mineral formation and cell encrustation by the nitrate-dependent Fe(Ⅱ)-oxidizer strain BoFeN1[J]. Geobiology, 2006, 3(4):235-245.

    Google Scholar Pub Med

    [14] WEBER K A, HEDRICK D B, PEACOCK A D, et al. Physiological and taxonomic description of the novel autotrophic, metal oxidizing bacterium, Pseudogulbenkiania sp. strain 2002[J]. Applied Microbiology & Biotechnology, 2009, 83(3):555-565.

    Google Scholar Pub Med

    [15] ESTHER J, SUKLA L B, PRADHAN N, et al. Fe (Ⅲ) reduction strategies of dissimilatory iron reducing bacteria[J]. Korean Journal of Chemical Engineering, 2015, 32(1):1-14.

    Google Scholar Pub Med

    [16] 罗海林,汤佳,周普雄,等. 异化铁还原诱导次生铁矿对土壤重金属形态转化的影响[J]. 生态学杂志,2018,37(6):1620-1627. LUO H L, TANG J, ZHOU P X, et al. Influence of secondary iron-oxide mineralization induced by dissimilatory iron reduction bacteria on fraction transformation of heavy metals in soil[J]. Chinese Journal of Ecology, 2018, 37(6):1620-1627(in Chinese).

    Google Scholar Pub Med

    [17] LOVLEY D R, HOLMES D E, NEVIN K P. Dissimilatory Fe(Ⅲ) and Mn(Ⅳ) reduction[J]. Advances in Microbial Physiology, 2004, 49(2):219.

    Google Scholar Pub Med

    [18] CORNELL R M, SCHWERTMANN U. Surface chemistry and colloidal stability[M]. Wiley-VCH Verlag GmbH & Co. KGaA, 2003.

    Google Scholar Pub Med

    [19] LU X X, HUANGFU X L, MA J. Removal of trace mercury(Ⅱ) from aqueous solution by in situ formed Mn-Fe (hydr) oxides[J]. Journal of Hazardous Materials, 2014, 280:71-78.

    Google Scholar Pub Med

    [20] KAPPLER A. Geomicrobiological cycling of iron[J]. Reviews in Mineralogy and Geochemistry, 2005, 59(1):85-108.

    Google Scholar Pub Med

    [21] IWAHORI K, WATANABE J, TANI Y, et al. Removal of heavy metal cations by biogenic magnetite nanoparticles produced in Fe(Ⅲ)-reducing microbial enrichment cultures[J]. Journal of Bioscience and Bioengineering, 2014, 117(3):333-335.

    Google Scholar Pub Med

    [22] MAILLOT F, MORIN G, JUILLOT F, et al. Structure and reactivity of As(Ⅲ)-and As(Ⅴ)-rich schwertmannites and amorphous ferric arsenate sulfate from the Carnoulès acid mine drainage, France:Comparison with biotic and abiotic model compounds and implications for As remediation[J]. Geochimica Et Cosmochimica Acta, 2013, 104:310-329.

    Google Scholar Pub Med

    [23] ONA-NGUEMA G, MORIN G, JUILLOT F, et al. EXAFS analysis of arsenite adsorption onto two-line ferrihydrite, hematite, goethite, and lepidocrocite[J]. Environmental Science & Technology, 2005, 39(23):9147-9155.

    Google Scholar Pub Med

    [24] XIU W, YU X, GUO H, et al. Facilitated arsenic immobilization by biogenic ferrihydrite-goethite biphasic Fe(Ⅲ) minerals (Fh-Gt Bio-bi-minerals)[J]. Chemosphere, 2019, 225:755-764.

    Google Scholar Pub Med

    [25] PEREZ J P H, FREEMAN H M, BROWN A P, et al. Direct visualization of arsenic binding on green rust sulfate[J]. Environmental Science & Technology, 2020, 54(6):3297-3305.

    Google Scholar Pub Med

    [26] BECKER T, GORHAM N, SHIERS D W, et al. In situ imaging of Sulfobacillus thermosulfidooxidans on pyrite under conditions of variable pH using tapping mode atomic force microscopy[J]. Process Biochemistry, 2011, 46(4):966-976.

    Google Scholar Pub Med

    [27] KUPKA D, LOVÁS M, ŠEPELÁK V. Deferrization of kaolinic sand by iron oxidizing and iron reducing bacteria[J]. Advanced Materials Research, 2007, 20/21:130-133.

    Google Scholar Pub Med

    [28] LIAO Y, LIANG J, ZHOU L. Adsorptive removal of As(Ⅲ) by biogenic schwertmannite from simulated As-contaminated groundwater[J]. Chemosphere, 2011, 83(3):295-301.

    Google Scholar Pub Med

    [29] MIOT J, BENZERARA K, OBST M, et al. Extracellular Iron Biomineralization by Photoautotrophic Iron-Oxidizing Bacteria[J]. Applied and Environmental Microbiology, 2009, 75(17):5586-5591.

    Google Scholar Pub Med

    [30] CHAN C S, FAKRA S C, EDWARDS D C, et al. Iron oxyhydroxide mineralization on microbial extracellular polysaccharides[J]. Geochimica Et Cosmochimica Acta, 2009, 73(13):3807-3818.

    Google Scholar Pub Med

    [31] CHAN C S, DE STASIO G, WELCH S A, et al. Microbial polysaccharides template assembly of nanocrystal fibers[J]. Science, 2004, 303(5664):1656-1658.

    Google Scholar Pub Med

    [32] 孙振亚,黄江波. 葡聚糖分子对氢氧化铁矿化结晶的调制作用[J]. 物理化学学报,2006,22(2):172-177. SUN Z Y, HUANG J B. Modulation of dextran molecules on the crystallization of ferric hydroxide[J]. Journal of Physical Chemistry, 2006, 22(2):172-177(in Chinese).

    Google Scholar Pub Med

    [33] FRIERDICH A J, LUO Y, CATALANO J G. Trace element cycling through iron oxide minerals during redox-driven dynamic recrystallization[J]. Geology, 2011, 39(11):1083-1086.

    Google Scholar Pub Med

    [34] OUYANG B, LU X, LIU H, et al. Reduction of jarosite by Shewanella oneidensis MR-1 and secondary mineralization[J]. Geochimica et Cosmochimica Acta, 2014, 124:54-71.

    Google Scholar Pub Med

    [35] LATTA D E, BACHMAN J E, SCHERER M M. Fe electron transfer and atom exchange in goethite:Influence of Al-substitution and anion sorption[J]. Environmental Science & Technology, 2012, 46(19):10614-10623.

    Google Scholar Pub Med

    [36] HANSEL C M, BENNER S G, FENDORF S. Competing Fe(Ⅱ)-induced mineralization pathways of ferrihydrite[J]. Environmental Science & Technology, 2005, 39(18):7147.

    Google Scholar Pub Med

    [37] FRIERDICH A J, CATALANO J G. Controls on Fe(Ⅱ)-activated trace element release from goethite and hematite[J]. Environmental Science & Technology, 2012, 46(3):1519-1526.

    Google Scholar Pub Med

    [38] SMEATON C M, WALSHE G E, FRYER B J, et al. Reductive dissolution of Tl(Ⅰ)-jarosite by Shewanella putrefaciens:Providing new insights into Tl(Ⅰ) biogeochemistry[J]. Environmental Science & Technology, 2012, 46(20):11086-11094.

    Google Scholar Pub Med

    [39] JONES E J P, NADEAU T, VOYTEK M A, et al. Role of microbial iron reduction in the dissolution of iron hydroxysulfate minerals[J]. Journal of Geophysical Research, 2006, 111(G1):G01012.

    Google Scholar Pub Med

    [40] ROSSO K M, YANINA S V, GORSKI C A, et al. Connecting observations of hematite (alpha-Fe2O3) growth catalyzed by Fe(Ⅱ)[J]. Environmental Science & Technology, 2010, 44(1):61-67.

    Google Scholar Pub Med

    [41] HANDLER R M, BEARD B L, JOHNSON C M, et al. Atom exchange between aqueous Fe(Ⅱ) and goethite:An Fe isotope tracer study[J]. Environmental Science & Technology, 2009, 43(4):1102-1107.

    Google Scholar Pub Med

    [42] LIU C, LI F, CHEN M, et al. Adsorption and stabilization of lead during Fe(Ⅱ)-catalyzed phase transformation of ferrihydrite[J]. Acta Chimica Sinica, 2017, 75(6):621.

    Google Scholar Pub Med

    [43] DUTRIZAC J E, JAMBOR J L. The behaviour of arsenic during Jarosite precipitation:Arsenic precipitation at 97℃ from sulphate or chloride media[J]. Canadian Metallurgical Quarterly, 2014, 26(2):91-101.

    Google Scholar Pub Med

    [44] JAMES J D, TOLEK T, TOHRU A, et al. Speciation and quantitative mapping of metal species in microbial biofilms using scanning transmission X-ray microscopy[J]. Environmental Science & Technology, 2006, 40(5):1556-1565.

    Google Scholar Pub Med

    [45] CHEN C, KUKKADAPU R K, LAZAREVA O, et al. Solid-phase Fe speciation along the vertical redox gradients in floodplains using XAS and Mössbauer spectroscopies[J]. Environmental Science & Technology, 2017, 51(14):7903-7912.

    Google Scholar Pub Med

    [46] AEPPLI M, KAEGI R, KRETZSCHMAR R, et al. Electrochemical analysis of changes in iron oxide reducibility during abiotic ferrihydrite transformation into goethite and magnetite[J]. Environmental Science & Technology, 2019, 53(7):3568-3578.

    Google Scholar Pub Med

    [47] HANSEL C M, BENNER S G, NEISS J, et al. Secondary mineralization pathways induced by dissimilatory iron reduction of ferrihydrite under advective flow[J]. Geochimica Et Cosmochimica Acta, 2003, 67(16):2977-2992.

    Google Scholar Pub Med

    [48] 张蕊,陆现彩,刘欢,等. Shewanella oneidensis MR-1还原铁帽过程中的矿物相转变和重金属的释放[J]. 矿物岩石地球化学通报,2015, 34(2):316-322. ZHANG R, LU X C, LIU H, et al. Phase transition of minerals and release of heavy metals in the reduction process of iron cap by Shewanella oneidensis MR-1[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2015, 34(2):316-322(in Chinese).

    Google Scholar Pub Med

    [49] AHEMAD M. Remediation of metalliferous soils through the heavy metal resistant plant growth promoting bacteria:Paradigms and prospects[J]. Arabian Journal of Chemistry, 2019, 12(7):1365-1377.

    Google Scholar Pub Med

    [50] LEE S, ROH Y, KOH D C. Oxidation and reduction of redox-sensitive elements in the presence of humic substances in subsurface environments:A review[J]. Chemosphere, 2019, 220:86-97.

    Google Scholar Pub Med

    [51] LIU S V, ZHOU J, ZHANG C, et al. Thermophilic Fe(Ⅲ)-reducing bacteria from the deep subsurface:The evolutionary implications[J]. Science, 1997, 277(5329):1106-1109.

    Google Scholar Pub Med

    [52] ROH Y, GAO H, VALI H, et al. Metal reduction and iron biomineralization by a psychrotolerant Fe(Ⅲ)-reducing bacterium, Shewanella sp. strain PV-4[J]. Applied & Environmental Microbiology, 2006, 72(5):3236.

    Google Scholar Pub Med

    [53] VEERAMANI H, SCHEINOST A C, MONSEGUE N, et al. Abiotic reductive immobilization of U(Ⅵ) by biogenic mackinawite[J]. Environmental Science & Technology, 2013, 47(5):2361-2369.

    Google Scholar Pub Med

    [54] WIELINGA B, MIZUBA M M, HANSEL C M, et al. Iron promoted reduction of chromate by dissimilatory iron-reducing bacteria[J]. Environmental Science & Technology, 2001, 35(3):522-527.

    Google Scholar Pub Med

    [55] PENG L, LIU Y, GAO S H, et al. Assessing chromate reduction by dissimilatory iron reducing bacteria using mathematical modeling[J]. Chemosphere, 2015, 139:334-339.

    Google Scholar Pub Med

    [56] LAVERMAN A M, BLUM J S, SCHAEFER J K, et al. Growth of strain SES-3 with arsenate and other diverse electron acceptors[J]. Applied & Environmental Microbiology, 1995, 61(10):3556-3561.

    Google Scholar Pub Med

    [57] CUMMINGS D E, CACCAVO F, FENDORF S, et al. Arsenic mobilization by the dissimilatory Fe(Ⅲ)-reducing bacterium Shewanella alga BrY[J]. Environmental Science & Technology, 1999, 33(5):723-729.

    Google Scholar Pub Med

    [58] ISLAM F S, ANDREW G G, CHRISTOPHER B, et al. Role of metal-reducing bacteria in arsenic release from Bengal delta sedimentsents[J]. Nature, 2004, 430(6995):68-71.

    Google Scholar Pub Med

    [59] HUQ M E, FAHAD S, SHAO Z, et al. Arsenic in a groundwater environment in Bangladesh:Occurrence and mobilization[J]. Journal of Environmental Management, 2020, 262:110318.

    Google Scholar Pub Med

    [60] AMSTAETTER K, BORCH T, LARESE-CASANOVA P, et al. Redox transformation of arsenic by Fe(Ⅱ)-activated goethite (α-FeOOH)[J]. Environmental Science & Technology, 2010, 44(1):102-108.

    Google Scholar Pub Med

    [61] 汪明霞,王娟,司友斌. Shewanella oneidensis MR-1异化还原Fe(Ⅲ)介导的As(Ⅲ)氧化转化[J]. 中国环境科学,2014,34(9):2368-2373. WANG M X, WANG J, SI Y B. Shewanella oneidensis MR-1 dissimilation reduction Fe(Ⅲ)-mediated As(Ⅲ) oxidation and transformation[J]. China Environmental Science, 2014, 34(9):2368-2373(in Chinese).

    Google Scholar Pub Med

    [62] XIU W, GUO H, LIU Q, et al. Arsenic removal and transformation by Pseudomonas sp. strain GE-1-induced ferrihydrite:Co-precipitation versus adsorption[J]. Water, Air, & Soil Pollution, 2015, 226(6):167.

    Google Scholar Pub Med

    [63] ZHAO Z, JIA Y, XU L, et al. Adsorption and heterogeneous oxidation of As(Ⅲ) on ferrihydrite[J]. Water Research, 2011, 45(19):6496-6504.

    Google Scholar Pub Med

    [64] OKIBE N, KOGA M, SASAKI K, et al. Simultaneous oxidation and immobilization of arsenite from refinery waste water by thermoacidophilic iron-oxidizing archaeon, Acidianus brierleyi[J]. Minerals Engineering, 2013, 48:126-134.

    Google Scholar Pub Med

    [65] 司友斌,孙林,王卉. Shewanella oneidensis MR-1对针铁矿的还原与汞的生物甲基化[J]. 环境科学,2015,36(6):2252-2258. SI Y B, SUN L, WANG H. Reduction of goethite and biomethylation of mercury by Shewanella oneidensis MR-1[J]. Environmental Science, 2015, 36(6):2252-2258(in Chinese).

    Google Scholar Pub Med

    [66] SI Y, ZOU Y, LIU X, et al. Mercury methylation coupled to iron reduction by dissimilatory iron-reducing bacteria[J]. Chemosphere, 2015, 122:206-212.

    Google Scholar Pub Med

    [67] KERIN E J, GILMOUR C C, RODEN E, et al. Mercury methylation by dissimilatory Iron-reducing bacteria[J]. Applied and Environmental Microbiology, 2006, 72(12):7919-7921.

    Google Scholar Pub Med

    [68] KATSOYIANNIS I A, ZOUBOULIS A I. Application of biological processes for the removal of arsenic from groundwaters[J]. Water Research, 2004, 38(1):17-26.

    Google Scholar Pub Med

    [69] HOHMANN C, WINKLER E, MORIN G, et al. Anaerobic Fe(Ⅱ)-oxidizing bacteria show as resistance and immobilize As during Fe(Ⅲ) mineral precipitation[J]. Environmental Science & Technology, 2010, 44(1):94-101.

    Google Scholar Pub Med

    [70] XIU W, GUO H, SHEN J, et al. Stimulation of Fe(Ⅱ) oxidation, biogenic lepidocrocite formation, and arsenic immobilization by Pseudogulbenkiania sp. strain 2002[J]. Environmental Science & Technology, 2016, 50(12):6449-6458.

    Google Scholar Pub Med

    [71] TUFANO K J, FENDORF S. Confounding impacts of iron reduction on arsenic retention[J]. Environmental Science & Technology, 2008, 42(13):4777-4783.

    Google Scholar Pub Med

    [72] KOCAR B D, HERBEL M J, TUFANO K J, et al. Contrasting effects of dissimilatory iron(Ⅲ) and arsenic(Ⅴ) reduction on arsenic retention and transport[J]. Environmental Science & Technology, 2006, 40(21):6715-6721.

    Google Scholar Pub Med

    [73] BENNETT W W, TEASDALE P R, PANTHER J G, et al. Investigating arsenic speciation and mobilization in sediments with DGT and DET:A mesocosm evaluation of oxic-anoxic transitions[J]. Environmental Science & Technology, 2012, 46(7):3981-3989.

    Google Scholar Pub Med

    [74] WANG Y, LIU X, SI Y, et al. Release and transformation of arsenic from As-bearing iron minerals by Fe-reducing bacteria[J]. Chemical Engineering Journal, 2016, 295:29-38.

    Google Scholar Pub Med

    [75] FAROOQ S H, CHANDRASEKHARAM D, BERNER Z, et al. Influence of traditional agricultural practices on mobilization of arsenic from sediments to groundwater in Bengal delta[J]. Water Research, 2010, 44(19):5575-5588.

    Google Scholar Pub Med

    [76] WANG X, CHEN X, YANG J, et al. Effect of microbial mediated iron plaque reduction on arsenic mobility in paddy soil[J]. Journal of Environmental Sciences, 2009, 21(11):1562-1568.

    Google Scholar Pub Med

    [77] PEDERSEN H D, POSTMA D, JAKOBSEN R. Release of arsenic associated with the reduction and transformation of iron oxides[J]. Geochimica et Cosmochimica Act, 2006, 70(16):4116-4129.

    Google Scholar Pub Med

    [78] WANG Y, MORIN G, ONA-NGUEMA G, et al. Arsenic(Ⅲ) and arsenic(Ⅴ) speciation during transformation of lepidocrocite to magnetite[J]. Environmental Science & Technology, 2014, 48(24):14282-14290.

    Google Scholar Pub Med

    [79] DONG M F, FENG R W, WANG R G, et al. Inoculation of Fe/Mn-oxidizing bacteria enhances Fe/Mn plaque formation and reduces Cd and As accumulation in rice plant tissues[J]. Plant and Soil, 2016, 404(1/2):75-83.

    Google Scholar Pub Med

    [80] LI C, YI X, DANG Z, et al. Fate of Fe and Cd upon microbial reduction of Cd-loaded polyferric flocs by Shewanella oneidensis MR-1[J]. Chemosphere, 2016, 144:2065-2072.

    Google Scholar Pub Med

    [81] YUAN C, LIU T, LI F, et al. Microbial iron reduction as a method for immobilization of a low concentration of dissolved cadmium[J]. Journal of Environmental Management, 2018, 217:747-753.

    Google Scholar Pub Med

    [82] MUEHE E M, OBST M, HITCHCOCK A, et al. Fate of Cd during microbial Fe(Ⅲ) mineral reduction by a novel and Cd-tolerant Geobacter species[J]. Environmental Science & Technology, 2013, 47(24):14099-14109.

    Google Scholar Pub Med

    [83] MARTINEZ R E, PEDERSEN K, FERRIS F G. Cadmium complexation by bacteriogenic iron oxides from a subterranean environment[J]. Journal of Colloid and Interface Science, 2004, 275(1):82-89.

    Google Scholar Pub Med

    [84] MOHAMED A, YU L, FANG Y, et al. Iron mineral-humic acid complex enhanced Cr(Ⅵ) reduction by Shewanella oneidensis MR-1[J]. Chemosphere, 2020, 247:125902.

    Google Scholar Pub Med

    [85] CUMMINGS D E, FENDORF S, SINGH N, et al. Reduction of Cr(Ⅵ) under acidic conditions by the facultative Fe(Ⅲ)-reducing bacterium acidiphilium cryptum[J]. Environmental Science & Technology, 2007, 41(1):146-152.

    Google Scholar Pub Med

    [86] MASAKI Y, HIRAJIMA T, SASAKI K, et al. Bioreduction and immobilization of hexavalent chromium by the extremely acidophilic Fe(Ⅲ)-reducing bacterium Acidocella aromatica strain PFBC[J]. Extremophiles, 2015, 19(2):495-503.

    Google Scholar Pub Med

    [87] FINNERAN K T, ANDERSON R T, NEⅥN K P, et al. Potential for bioremediation of uranium-contaminated aquifers with microbial U(Ⅵ) reduction[J]. Journal of Soil Contamination, 2002, 11(3):339-357.

    Google Scholar Pub Med

    [88] ANDERSON R T, VRIONIS H A, ORTIZBERNAD I, et al. Stimulating the in situ activity of Geobacter species to remove uranium from the groundwater of a uranium-contaminated aquifer[J]. Applied Microbiology & Biotechnology, 2003, 69(10):5884-5891.

    Google Scholar Pub Med

    [89] WILLIAMS K H, BARGAR J R, LLOYD J R, et al. Bioremediation of uranium-contaminated groundwater:a systems approach to subsurface biogeochemistry[J]. Current Opinion in Biotechnology, 2013, 24(3):489-497.

    Google Scholar Pub Med

    [90] CHANG H, BUETTNER S W, SEAMAN J C, et al. Uranium immobilization in an iron-rich rhizosphere of a native wetland plant from the Savannah river site under reducing conditions[J]. Environmental Science & Technology, 2014, 48(16):9270-9278.

    Google Scholar Pub Med

    [91] LAKANIEMI A, DOUGLAS G B, KAKSONEN A H. Engineering and kinetic aspects of bacterial uranium reduction for the remediation of uranium contaminated environments[J]. Journal of Hazardous Materials, 2019, 371, 198-212.

    Google Scholar Pub Med

    [92] BEHRENDS T, VAN CAPPELLEN P. Competition between enzymatic and abiotic reduction of uranium(Ⅵ) under iron reducing conditions[J]. Chemical Geology, 2005, 220(3):315-327.

    Google Scholar Pub Med

    [93] WIATROWSKI H A, WARD P M, BARKAY T. Novel reduction of mercury(Ⅱ) by mercury-sensitive dissimilatory metal reducing bacteria[J]. Environmental Science & Technology, 2006, 40(21):6690-6696.

    Google Scholar Pub Med

    [94] LU X, LIU Y, JOHS A, et al. Anaerobic mercury methylation and demethylation by Geobacter bemidjiensis Bem[J]. Environmental Science & Technology, 2016, 50(8):4366-4373.

    Google Scholar Pub Med

    [95] SMEATON C M, FRYER B J, WEISENER C G. Intracellular precipitation of Pb by Shewanella putrefaciens CN32 during the reductive dissolution of Pb-jarosite[J]. Environmental Science & Technology, 2009, 43(21):8086-8091.

    Google Scholar Pub Med

    [96] TAO L, ZHU Z, LI F, et al. Fe(Ⅱ)/Cu(Ⅱ) interaction on goethite stimulated by an iron-reducing bacteria Aeromonas Hydrophila HS01 under anaerobic conditions[J]. Chemosphere, 2017, 187:43-51.

    Google Scholar Pub Med

    [97] SUGIO T, FUJⅡ M, TAKEUCHI F, et al. Volatilization of mercury by an iron oxidation enzyme system in a highly mercury-resistant Acidithiobacillus ferrooxidans strain MON-1[J]. Bioscience, Biotechnology, and Biochemistry, 2003, 67(7):1537-1544.

    Google Scholar Pub Med

    [98] XIANG L, CHAN L C, WONG J W C. Removal of heavy metals from anaerobically digested sewage sludge by isolated indigenous iron-oxidizing bacteria[J]. Chemosphere, 2000, 41(1/2):283-287.

    Google Scholar Pub Med

    [99] LACK J G, CHAUDHURI S K, KELLY S D, et al. Immobilization of radionuclides and heavy metals through anaerobic bio-oxidation of Fe(Ⅱ)[J]. Applied Microbiology & Biotechnology, 2002, 68(6):2704-2710.

    Google Scholar Pub Med

    [100] FABISCH M, BEULIG F, AKOB D M, et al. Surprising abundance of Gallionella-related iron oxidizers in creek sediments at pH 4.4 or at high heavy metal concentrations[J]. Frontiers in Microbiology, 2013, 4:390.

    Google Scholar Pub Med

    [101] FABISCH M, FREYER G, JOHNSON C A, et al. Dominance of ‘Gallionella capsiferriformans’ and heavy metal association with Gallionella-like stalks in metal-rich pH 6 mine water discharge[J]. Geobiology, 2015, 14(1):331-340.

    Google Scholar Pub Med

    [102] SALAS E C, BERELSON W M, HAMMOND D E, et al. The impact of bacterial strain on the products of dissimilatory iron reduction[J]. Geochimica Et Cosmochimica Acta, 2010, 74(2):574-583.

    Google Scholar Pub Med

    [103] BURTON E D, HOCKMANN K, KARIMIAN N, et al. Antimony mobility in reducing environments:The effect of microbial iron(Ⅲ)-reduction and associated secondary mineralization[J]. Geochimica et Cosmochimica Acta, 2019, 245:278-289.

    Google Scholar Pub Med

    [104] BAE S, LEE W. Biotransformation of lepidocrocite in the presence of quinones and flavins[J]. Geochimica Et Cosmochimica Acta, 2013, 114:144-155.

    Google Scholar Pub Med

    [105] O'LOUCHLIN E J, GORSKI C A, SCHERER M M, et al. Effects of oxyanions, natural organic matter, and bacterial cell numbers on the bioreduction of lepidocrocite (γ-FeOOH) and the formation of secondary mineralization products[J]. Environmental Science & Technology, 2010, 44(12):4570-4576.

    Google Scholar Pub Med

    [106] SHENG A, LI X, ARAI Y, et al. Citrate controls Fe(Ⅱ)-catalyzed transformation of ferrihydrite by complexation of the labile Fe(Ⅲ) intermediate[J]. Environmental Science & Technology, 2020, 54(12):7309-7319.

    Google Scholar Pub Med

    [107] LIU C X, GORBY Y A, ZACHARA J M, et al. Reduction kinetics of Fe(Ⅲ), Co(Ⅲ), U(Ⅵ), Cr(Ⅵ), and Tc(Ⅶ) in cultures of dissimilatory metal-reducing bacteria[J]. Biotechnology and Bioengineering, 2002, 80(6):637-649.

    Google Scholar Pub Med

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(4881) PDF downloads(239) Cited by(0)

Access History

Study on the influence of iron redox cycling microorganisms on heavy metals in the environment

Fund Project: Supported by National Natural Science Foundation of China (41771512).

Abstract: Iron redox cycling microorganisms include Fe(Ⅱ)-oxidizing bacteria and Fe(Ⅲ)-reducing bacteria. The oxidation (or reduction) of Fe2+(or Fe3+) mediated by these microorganisms is usually accompanied by the migration and transformation of a series of heavy metal elements, which plays an important role in influencing the bioavailability and mobility of heavy metals in the environment. This paper reviewed the iron redox cycling microorganisms in the environment, and discussed the mechanism of iron redox cycling microorganisms driving heavy metal migration and transformation from the following aspects:immobilization of heavy metals by iron minerals produced by iron oxidizing bacteria; reduction and dissolution of iron minerals and formation of secondary minerals mediate by iron-reducing bacteria; and microbial metabolism of iron redox cycling microorganisms coupled with heavy metal speciation transformation. Furthermore, the remediation potential of iron redox cycling microorganisms on heavy metals such as arsenic, cadmium, chromium, copper and lead in the environment were summarized through research examples. Future research can focus on the biomineralization mechanism of specific microorganisms, regulation of heavy metal remediation by biomineralization, and the application of iron redox cycling microorganisms in remediation of heavy metal contaminated sites. This paper aims to provide theoretical and application basis for remediation of heavy metal pollution based on iron redox cycling microorganisms.

Reference (107)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint