2021 Volume 40 Issue 2
Article Contents

CHEN Guanyi, LIU Huanbo, LI Jian, YAN Beibei, DONG Lei. Treatment of antibiotic mycelial fermentation residue: The critical review[J]. Environmental Chemistry, 2021, (2): 459-473. doi: 10.7524/j.issn.0254-6108.2020061302
Citation: CHEN Guanyi, LIU Huanbo, LI Jian, YAN Beibei, DONG Lei. Treatment of antibiotic mycelial fermentation residue: The critical review[J]. Environmental Chemistry, 2021, (2): 459-473. doi: 10.7524/j.issn.0254-6108.2020061302

Treatment of antibiotic mycelial fermentation residue: The critical review

  • Corresponding author: YAN Beibei, yanbeibei@tju.edu.cn
  • Received Date: 13/06/2020
    Fund Project: Supported by the National Key R & D Program of China(2016YFE0201800), National Natural Science Foundation of China(51676138, 51878557)and Tianjin Science and Technology Project(18YFJLCG00090, 18YFHBZC00020).
  • Antibiotic mycelial fermentation residue (AMFR) is a solid waste generated during the fermentation for the production of antibiotic drugs. As a state-specified hazardous waste, it causes huge environmental pollution due to the large yields, high contaminants, and the inevitable residual of antibiotics. The clean treatments of AMFR are facing difficulties. In this paper, the types, characteristics and perniciousness of AMFR are reviewed, and the feasible thermochemical technologies and non-thermochemical technologies are also introduced. Particularly, the thermochemical technologies are systematic summarized, including incineration, hydrothermal treatment and pyrolysis /gasification. The general evaluations, environmental impact, applications and research progress of thermochemical technologies are comparatively analyzed. At the same time, it is hoped to provide some useful information for treating AMFR. For example, torrefaction, as a pretreatment, can eliminate the biological hazards and provide benefits for downstream thermal treatments. With this review, it shed a light on AMDR treatment during production process of antibiotic drugs, and promoted the sustainable and sound development of pharmaceutical industry of our country.
  • 加载中
  • [1] 李再兴, 田宝阔, 左剑恶, 等. 抗生素菌渣处理处置技术进展[J]. 环境工程, 2012, 30(2):72-75. LI Z X, TIAN B K, ZUO J E, et al. Progress in treatment and disposal technology of antibiotic bacterial residues[J]. Environmental Engineering, 2012, 30(2):72-75(in Chinese).

    Google Scholar Pub Med

    [2] 袁梓涵, 尹杰, 尹艳山, 等. 造纸污泥热化学处理的研究进展[J]. 中国造纸学报, 2019, 34(2):60-65. YUAN Z H, YIN J, YIN Y S, et al. Research progress in thermochemical conversion of paper sludge[J]. Transaction of China Pulp and Paper, 2019, 34(2):60-65(in Chinese).

    Google Scholar Pub Med

    [3] 安淼, 袁国安, 夏旻. 废弃物热化学处理方法的多角度对比分析[J]. 环境与可持续发展, 2018, 43(4):151-154. AN M, YUAN G A, XIA M. Comparison of thermochemical technologies for waste treatment[J]. Environment and Sustainable Development, 2018, 43(4):151-154(in Chinese).

    Google Scholar Pub Med

    [4] 苏毅, 朱惠春, 张金亮, 等. 城市垃圾热化学转化处理技术进展与应用[J]. 工业锅炉, 2015(1):7-14. SU Y, ZHU H C, ZHANG J L, et al. Progress and application of thermochemical treatment technology for municiple solid waste[J]. Industrial Boilers, 2015 (1):7-14(in Chinese).

    Google Scholar Pub Med

    [5] BEN Y J, FU C X, HU M, et al. Human health risk assessment of antibiotic resistance associated with antibiotic residues in the environment:A review[J]. Environmental Research, 2019, 169:483-493.

    Google Scholar Pub Med

    [6] 贡丽鹏, 郭斌, 任爱玲, 等. 抗生素菌渣理化特性[J]. 河北科技大学学报, 2012, 33(2):190-196. GONG L P, GUO B, REN A L, et al. Physical and chemical properties of antibiotics bacterial residue[J]. Journal of University of Science and Technology, 2012, 33(2):190-196(in Chinese).

    Google Scholar Pub Med

    [7] 李海源.水稻秸秆营养穴盘微波热风联合干燥工艺研究[D]. 大庆:黑龙江八一农垦大学, 2019. LI H Y. Study on microwave hot air combined drying technology of rice straw nutrition plug plate[D]. Daqing:Heilongjiang Bayi Agricultural University, 2019(in Chinese).

    Google Scholar Pub Med

    [8] 侯善策.堆肥物料含水率在线检测系统的优化及试验验证[D]. 大庆:黑龙江八一农垦大学, 2018. HOU S C. Optimization and experimental verification of on-line detection system for moisture content of compost materials[D]. Daqing:Heilongjiang Bayi Agricultural University, 2018(in Chinese).

    Google Scholar Pub Med

    [9] 田纯焱.畜禽粪便好氧堆肥处理及高效复合肥肥效的研究[D]. 武汉:华中农业大学, 2011. TIAN C Y. Study on aerobic composting of livestock and poultry manure and fertilizer efficiency of high-efficiency compound fertilizer[D]. Wuhan:Huazhong Agricultural University, 2011(in Chinese).

    Google Scholar Pub Med

    [10] 邹书娟, 王一迪, 张均雅, 等. 抗生素菌渣理化性质分析[J]. 环境科学与技术, 2018, 41(S1):47-52. ZOU S J, WANG Y D, ZHANG J Y, et al. Analysis of physical and chemical properties of antibiotic bacterial residue[J]. Environmental Science & Technology, 2018, 41(S1):47-52(in Chinese).

    Google Scholar Pub Med

    [11] 冯丽慧, 邢奕, 杨鹏宇. 抗生素菌渣热解及气态污染物排放特性的研究[J]. 安全与环境工程, 2018, 25(4):89-96. FENG L G, XING Y, YANG P Y. Characteristics of pyrolysis and gaseous pollutant emissions of antibiotic bacterial residue[J]. Safety and Environmental Engineering, 2018, 25(4):89-96(in Chinese).

    Google Scholar Pub Med

    [12] 刘朝霞, 牛文娟, 楚合营, 等. 秸秆热解工艺优化与生物炭理化特性分析[J]. 农业工程学报, 2018, 34(5):196-203. LIU C X, NIU W J, CHU H Y, et al. Process optimization for straws pyrolysis and analysis of biochar physiochemical properties[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(5):196-203(in Chinese).

    Google Scholar Pub Med

    [13] 蔡鹏瑶, 黄光群, 韩鲁佳. 不同畜禽粪便的热解特性及反应动力学[J]. 中国农业大学学报, 2012, 17(5):112-117. CAI P Y, HUANG G Q, HAN L J. Characteristics and kinetics of pyrolysis for animal manures[J]. Journal of China Agricultural University, 2012, 17(5):112-117(in Chinese).

    Google Scholar Pub Med

    [14] 詹昊, 林均衡, 黄艳琴, 等. 抗生素菌渣热解N官能团变化特征及其与NOx前驱物关系研究[J]. 燃料化学学报, 2017, 45(10):1219-1229. ZHAN H, LIN J H, HUANG Y Q, et al. Evolution of nitrogen functionalities and their relation to NOx precursors during pyrolysis of antibiotic mycelia wastes[J].Journal of Fuel Chemistry and Technology, 2017, 45(10):1219-1229(in Chinese).

    Google Scholar Pub Med

    [15] 陈黎, 孔祥生, 刘秋新, 等. 抗生素菌渣生物炭的制备及特性[J]. 环境科学与技术, 2019, 42(6):128-133. CHEN L, KONG X S, LIU Q X, et al. Preparation and characteristics of biochars produced from antibiotic bacterial residues[J]. Environmental Science & Technology, 2019, 42(6):128-133(in Chinese).

    Google Scholar Pub Med

    [16] 焦永刚, 马长捷, 李敏霞. 热解法处理抗生素发酵残渣的研究初探[J]. 工业安全与环保, 2011, 37(5):36-37. JIAO Y G, MA C J, LI M X. The study of antibiotic fermentation residue treatment by pyrolysis[J]. Industrial Safety and Environmental Protection, 2011, 37(5):36-37(in Chinese).

    Google Scholar Pub Med

    [17] 平然, 任爱玲, 田书磊, 等. 两种抗生素菌渣经SEA-CBS技术处理后的肥料特性[J]. 环境科学研究, 2019, 32(11):1945-1951. PING R, REN A L, TIAN S L, et al. Fertilizer characteristics of two kinds of antibiotic bacterial residues treated by SEA-CBS technology[J]. Research of Environment Sciences, 2019, 32(11):1945-1951(in Chinese).

    Google Scholar Pub Med

    [18] 陈黎, 孔祥生, 刘秋新, 等. 妥布霉素菌渣的理化性质及危害[J]. 环境科学与技术, 2019, 42(9):30-35. CHEN L, KONG X S, LIU Q X, et al. Physical and chemical properties and harm of tobramycin bacterial residues[J]. Environmental Science & Technology, 2019, 42(9):30-35(in Chinese).

    Google Scholar Pub Med

    [19] 陈小娟.重金属危险废物的药剂稳定化及其机理研究[D]. 杭州:浙江工业大学, 2004. CHEN X J. Study on stabilization and mechanism of heavy metal hazardous waste[D]. Hangzhou:Zhejiang University of Technology, 2004(in Chinese).

    Google Scholar Pub Med

    [20] 曹盼, 宋思奇, 刘惠玲. 氨基糖苷类抗生素菌渣残留检测方法与资源化研究进展[J]. 环境保护科学, 2018, 44(4):121-126. CAO P, SONG S Q, LIU H L. Research progress in residue detection methods and resource recovery of aminoglycoside antibiotic residue[J]. Environmental Protection Science, 2018, 44(4):121-126(in Chinese).

    Google Scholar Pub Med

    [21] HERNANDO M D, MEZCUA M, FERNÁNDEZ-ALBA A R, et al. Environmental risk assessment of pharmaceutical residues in wastewater effluents, surface waters and sediments[J]. Talanta, 2006, 69(2):334-342.

    Google Scholar Pub Med

    [22] WATKINSON A J, MURBY E J, KOLPIN D W, et al. The occurrence of antibiotics in an urban watershed:From wastewater to drinking water[J]. Science of the Total Environment, 2009, 407(8):2711-2723.

    Google Scholar Pub Med

    [23] 史晓, 卜庆伟, 吴东奎, 等. 地表水中10种抗生素SPE-HPLC-MS/MS检测方法的建立[J]. 环境化学, 2020, 39(4):1075-1083. SHI X, BU Q W, WU D K, et al. Simultaneous determination of 10 antibiotic residues in surface water by SPE-HPLC-MS/MS[J]. Environmental Chemistry, 2020, 39(4):1075-1083(in Chinese).

    Google Scholar Pub Med

    [24] LUO Y, XU L, RYSZ M, et al. Occurrence and transport of tetracycline, sulfonamide, quinolone, and macrolide antibiotics in the Haihe River Basin, China[J]. Environmental Science & Technology, 2011, 45(5):1827-1833.

    Google Scholar Pub Med

    [25] 宋淑敏, 张翔宇, 周佳虹, 等. 超高效液相色谱串联质谱法同时测定城市污水处理厂污泥中12种抗生素[J]. 环境化学, 2017, 36(09):1923-1931. SONG S M, ZHANG X Y, ZHOU J H, et al. Simultaneous determination of 12 antibiotics in sewage sludge by ultra performance liquid chromatography-electrospray ionization tandem mass spectrometry[J]. Environmental Chemistry, 2017, 36(9):1923-1931(in Chinese).

    Google Scholar Pub Med

    [26] CHEN W, GENG Y, HONG J L, et al. Life cycle assessment of antibiotic mycelial residues management in China[J]. Renewable and Sustainable Energy Reviews, 2017, 79:830-838.

    Google Scholar Pub Med

    [27] SHAO J A, YAN R, CHEN H P, et al. Pyrolysis characteristics and kinetics of sewage sludge by thermogravimetry fourier transform infrared analysis[J]. Energy & Fuels, 2008, 22(1):38-45.

    Google Scholar Pub Med

    [28] JIANG X G, FENG Y H, LV G J, et al. Bioferment residue:TG-FTIR study and cocombustion in a MSW incineration plant[J]. Environmental Science & Technology, 2012, 46(24):13539-13544.

    Google Scholar Pub Med

    [29] ZHANG G Y, LIU H, GE Y X, et al. Gaseous emission and ash characteristics from combustion of high ash content antibiotic mycelial residue in fluidized bed and the impact of additional water vapor[J]. Fuel, 2017, 202:66-77.

    Google Scholar Pub Med

    [30] 洪晨, 杨强, 王志强, 等. 抗生素菌渣与煤混合燃烧特性及其动力学分析[J]. 化工学报, 2017, 68(1):360-368. HONG C, YANG Q, WANG Z Q, et al. Co-combustion characteristics and kinetics analysis of antibiotic bacterial residue and coal[J]. CIESC Journal, 2017, 68(1):360-368(in Chinese).

    Google Scholar Pub Med

    [31] CHAKRABORTY M, MIAO C, MCDONALD A, et al. Concomitant extraction of bio-oil and value added polysaccharides from Chlorella sorokiniana using a unique sequential hydrothermal extraction technology[J]. Fuel, 2012, 95:63-70.

    Google Scholar Pub Med

    [32] SONG W H, WANG S Z, GUO Y, et al. Bio-oil production from hydrothermal liquefaction of waste Cyanophyta biomass:Influence of process variables and their interactions on the product distributions[J]. International Journal of Hydrogen Energy, 2017, 42(31):20361-20374.

    Google Scholar Pub Med

    [33] WANG L P, LI A M, CHANG Y Z. Relationship between enhanced dewaterability and structural properties of hydrothermal sludge after hydrothermal treatment of excess sludge[J]. Water Research, 2017, 112:72-82.

    Google Scholar Pub Med

    [34] ZHUANG X Z, HUANG Y Q, SONG Y P, et al. The transformation pathways of nitrogen in sewage sludge during hydrothermal treatment[J]. Bioresource Technology, 2017, 245:463-470.

    Google Scholar Pub Med

    [35] TOOR S S, ROSENDAHL L, RUDOLF A. Hydrothermal liquefaction of biomass:A review of subcritical water technologies[J]. Energy, 2011, 36(5):2328-2342.

    Google Scholar Pub Med

    [36] MENG D W, JIANG Z L, KUNIO Y, et al. The effect of operation parameters on the hydrothermal drying treatment[J]. Renewable Energy, 2012, 42:90-94.

    Google Scholar Pub Med

    [37] NEYENS E, BAEYENS J. A review of thermal sludge pre-treatment processes to improve dewaterability[J]. Journal of Hazardous Materials, 2003, 98(1):51-67.

    Google Scholar Pub Med

    [38] ZHUANG X Z, ZHAN H, SONG Y P, et al. Reutilization potential of antibiotic wastes via hydrothermal liquefaction (HTL):Bio-oil and aqueous phase characteristics[J]. Journal of the Energy Institute, 2019, 92(5):1537-1547.

    Google Scholar Pub Med

    [39] ZHANG G Y, MA D C, PENG C N, et al. Process characteristics of hydrothermal treatment of antibiotic residue for solid biofuel[J]. Chemical Engineering Journal, 2014, 252:230-238.

    Google Scholar Pub Med

    [40] WANG M M, LIU H L, CHENG X M, et al. Hydrothermal treatment of lincomycin mycelial residues:Antibiotic resistance genes reduction and heavy metals immobilization[J]. Bioresource Technology, 2019, 271:143-149.

    Google Scholar Pub Med

    [41] NEYENS E, BAEYENS J, DEWIL R, et al. Advanced sludge treatment affects extracellular polymeric substances to improve activated sludge dewatering[J]. Journal of Hazardous Materials, 2004, 106(2):83-92.

    Google Scholar Pub Med

    [42] LI C X, ZHANG G Y, ZHANG Z K, et al. Hydrothermal pretreatment for biogas production from anaerobic digestion of antibiotic mycelial residue[J]. Chemical Engineering Journal, 2015, 279:530-537.

    Google Scholar Pub Med

    [43] 尤占平, 郝长生, 焦永刚, 等. 两种抗生素菌渣热解及燃烧特性对比研究[J]. 工业安全与环保, 2016, 42(5):41-43. YOU Z P, HAO C S, JIAO Y G, et al. Pyrolysis and combustion characteristics comparison studies of two kinds of antibiotic residues[J]. Industrial Safety and Environmental Protection, 2016, 42(5):41-43(in Chinese).

    Google Scholar Pub Med

    [44] 洪晨, 王志强, 邢奕, 等. 热解温度对土霉素菌渣焦炭化学性质的影响[J]. 中国环境科学, 2017, 37(3):1058-1065. HONG C, WANG Z Q, XING Y, et al. Effect of temperature on chemical properties of chars in terramycin ferment residue paralysis process[J].China Environmental Science, 2017, 37(3):1058-1065(in Chinese).

    Google Scholar Pub Med

    [45] LIU Y C, ZHU X D, WEI X C, et al. CO2 activation promotes available carbonate and phosphorus of antibiotic mycelial fermentation residue-derived biochar support for increased lead immobilization[J]. Chemical Engineering Journal, 2018, 334:1101-1107.

    Google Scholar Pub Med

    [46] GUO J L, ZHENG L, LI F Z, et al. Thermal decomposition of antibiotic mycelial fermentation residues in Ar, air, and CO2-N2 atmospheres by TG-FTIR method[J]. Journal of Thermal Analysis and Calorimetry, 2019, 137(6):2053-2060.

    Google Scholar Pub Med

    [47] MA D C, ZHANG G Y, AREEPRASERT C, et al. Characterization of NO emission in combustion of hydrothermally treated antibiotic mycelial residue[J]. Chemical Engineering Journal, 2016, 284:708-715.

    Google Scholar Pub Med

    [48] ZHU X D, YANG S J, WANG L, et al. Tracking the conversion of nitrogen during pyrolysis of antibiotic mycelial fermentation residues using XPS and TG-FTIR-MS technology[J]. Environmental Pollution, 2016, 211:20-27.

    Google Scholar Pub Med

    [49] CHEN H F, WANG Y, XU G W, et al. Fuel-N evolution during the pyrolysis of industrial biomass wastes with high nitrogen content[J]. Energies, 2012, 5(12):5418-5438.

    Google Scholar Pub Med

    [50] DU Y Y, JIANG X G, LV G J, et al. Thermal behavior and kinetics of bio-ferment residue/coal blends during co-pyrolysis[J]. Energy Conversion and Management, 2014, 88:459-463.

    Google Scholar Pub Med

    [51] 常加富, 张屹, 霍燕, 等. 抗生素菌渣气化燃烧试验研究[J]. 化工管理, 2019(28):98-99. CHANG J F, ZHANG Q, HUO Y, et al. Experimental study on pyrolysis fasification and combustion of antibiotic mycelial dregs[J]. Chemical Enterprise Management, 2019 (28):98-99(in Chinese).

    Google Scholar Pub Med

    [52] 辛善志, 黄芳, 刘晓烨, 等. 烘焙中药渣的热解与燃烧特性及其动力学分析[J]. 化工学报, 2019, 70(8):3142-3150. XIN S Z, HUANG F, LIU X Y, et al. Pyrolysis and combustion characteristics and kinetics of torrefied traditional Chinese medicine waste[J]. CIESC Journal, 2019, 70(8):3142-3150(in Chinese).

    Google Scholar Pub Med

    [53] 张雨, 徐佳佳, 马中青, 等. 烘焙预处理对方竹热解产物特性的影响[J]. 浙江农林大学学报, 2019, 36(5):981-989. ZHANG Y, XU J J, MA Z Q, et al. Pretreatment on characteristics of pyrolysis products for small diameter sympodial bamboo with torrefaction[J]. Journal of Zhejiang A & F University, 2019, 36(5):981-989(in Chinese).

    Google Scholar Pub Med

    [54] KIM H Y, YU S H, LEE M J, et al. Radiolysis of selected antibiotics and their toxic effects on various aquatic organisms[J]. Radiation Physics and Chemistry, 2009, 78(4):267-272.

    Google Scholar Pub Med

    [55] CSAY T, RACZ G, TAKACS E, et al. Radiation induced degradation of pharmaceutical residues in water:Chloramphenicol[J]. Radiation Physics and Chemistry, 2012, 81(9):1489-1494.

    Google Scholar Pub Med

    [56] SANCHEZ-POLO M, LOPEZ-PENALVER J, PRADOS-JOYA G, et al. Gamma irradiation of pharmaceutical compounds, nitroimidazoles, as a new alternative for water treatment[J]. Water Research, 2009, 43(16):4028-4036.

    Google Scholar Pub Med

    [57] 谢芳, 哈益明, 王锋, 等. γ射线辐照水溶液中氯霉素的降解研究[J]. 辐射研究与辐射工艺学报, 2008(3):151-156. XIE F, HA Y M, WANG F, et al. Studies on γ-irradiation-induced-degradation of chloramphenicol in aqueous solution[J]. Journal of Radiation Research and Radiation Processing, 2008 (3):151-156(in Chinese).

    Google Scholar Pub Med

    [58] 邓良斌, 颜武华. 一种基于无害化处理的抗生素菌渣固体发酵装置的开发[J]. 福建轻纺, 2019(5):26-30. DENG L B, YAN W H. Development of a solid fermentation device for antibiotic bacteria residue based on harmless treatment[J]. The Light & Textile Industries of Fujian, 2019 (5):26-30(in Chinese).

    Google Scholar Pub Med

    [59] 李路平, 李俊玲, 杜黎君. 制药行业下脚料生产有机肥的质量评价[J]. 河南科技学院学报, 2009, 37(3):29-31. LI L P, LI J L, DU L J. Quality evaluation and prospect analysis of production organic fertilizer by spent material in pharmaceutical industry in Xinjiang[J]. Journal of Henan Institute of Science and Technology, 2009, 37(3):29-31(in Chinese).

    Google Scholar Pub Med

    [60] 郑佳伦, 刘超翔, 刘琳, 等.畜禽养殖业主要废弃物处理工艺消除抗生素研究进展[J]. 环境化学, 2017, 36(1):37-47. DENG J L, LIU C X, LIU L, et al. Removal of antibiotics in waste and wastewater treatment facilities of animal breeding industry:A review[J]. Environmental Chemistry, 2017, 36(1):37-47(in Chinese).

    Google Scholar Pub Med

    [61] 苏建文, 王俊超, 许尚营, 等. 红霉素菌渣厌氧消化实验研究[J]. 中国沼气, 2013, 31(5):25-28. SU J W, WANG J C, XU S Y, et al. Anaerobic digestion of bacterial residues from erythromycin production[J]. China Biogas, 2013, 31(5):25-28(in Chinese).

    Google Scholar Pub Med

    [62] 孙效新, 黄栋, 李建民, 等. 抗生素废菌渣液厌氧生物处理试验研究[J]. 中国沼气, 1990(3):11-14. SUN X X, HUANG D, LI J M, et al. Study on the treatment of sewage of antibiotic mycelium by anaerobic digestion[J]. China Biogas, 1990 (3):11-14(in Chinese).

    Google Scholar Pub Med

    [63] 李士兰, 何辰庆. 以卡娜霉素制药废渣和酒槽为原料制取沼气发酵条件的研究[J]. 微生物学杂志, 1988(2):11-15. LI S L, HE C Q.A study of biogas formation of distillers's grains and residue of kanamycin fermentation[J]. Journal of Microbiology, 1988 (2):11-15(in Chinese).

    Google Scholar Pub Med

    [64] 何品晶, 管冬兴, 吴铎, 等. 氨氮和林可霉素对有机物厌氧消化的抑制效应[J]. 化工学报, 2011, 62(5):1389-1394. HE P J, GUAN D X, WU D, et al. Inhibitory effect of ammonia and lincomycin on anaerobic digestion[J]. CIESC Journal, 2011, 62(5):1389-1394(in Chinese).

    Google Scholar Pub Med

    [65] 徐颂, 吴铎, 吕凡, 等. 含固率和接种比对林可霉素菌渣厌氧消化的影响[J]. 中国环境科学, 2010, 30(3):362-368. XU S, WU D, LV F, et al. Influence of total solid content and ratio of inoculum to substrate on anaerobic digestion of lincomycin biowaste[J]. China Environmental Science, 2010, 30(3):362-368(in Chinese).

    Google Scholar Pub Med

    [66] 李维华, 赵君, 车畅. 四环素类抗生素对堆肥腐熟度的影响[J]. 黑龙江医药, 2013, 26(2):244-246. LI W H, ZHAO J, CHE C. Influence of tetracycline for composting[J]. Heilongjiang Medicine Journal, 2013, 26(2):244-246(in Chinese).

    Google Scholar Pub Med

    [67] 王桂珍, 李兆君, 张树清, 等. 土霉素在鸡粪好氧堆肥过程中的降解及其对相关参数的影响[J]. 环境科学, 2013, 34(2):795-803. WANG G Z, LI Z J, ZHANG S Q, et al. Degradation of oxytetracycline in chicken feces aerobic-composting and its effects on their related parameters[J]. Environmental Science, 2013, 34(2):795-803(in Chinese).

    Google Scholar Pub Med

    [68] RAMASWAMY J, PRASHER S O, PATEL R M, et al. The effect of composting on the degradation of a veterinary pharmaceutical[J]. Bioresource Technology, 2010, 101(7):2294-2299.

    Google Scholar Pub Med

    [69] 张红娟, 郭夏丽, 王岩. 林可霉素菌渣与牛粪联合堆肥实验研究[J]. 环境工程学报, 2011, 5(1):231-234. ZHANG H J, GUO X L, WANG Y. Study on composting of lincomycin fermentation dregs and cattle manure[J]. Chinese Journal of Environmental Engineering, 2011, 5(1):231-234(in Chinese).

    Google Scholar Pub Med

    [70] 何鲁波, 李新新, 黄周珍. 抗生素制药菌渣处理技术[J]. 畜牧兽医科学(电子版), 2019(6):53-54. HE L B, LI X X, HUANG Z Z. Antibiotic bacterium residue treatment technology[J]. Graziery Veterinary Science(Electronic Version), 2019(6):53-54(in Chinese).

    Google Scholar Pub Med

    [71] 唐海峰, 王俊峰. 制红霉素废渣吸附水中Pb2+的试验研究[J]. 金属矿山, 2011(8):155-158. TANG H F, WANG J F. Experimental research on adsorption of Pb2 + by erythromycin pharmaceutical waste residues[J]. Mental Mine, 2011(8):155-158(in Chinese).

    Google Scholar Pub Med

    [72] 占金宝, 苏海佳. 青霉菌丝体分子印迹吸附膜对Cr(Ⅲ)的吸附性能[J]. 北京化工大学学报(自然科学版), 2010, 37(4):94-97. ZHAN J B, SU H J. Adsorption of Cr(Ⅲ) by a membrane molecularly imprinted with penicillium mycelium[J]. Journal of Beijing University of Chemical Technology(Natural Science Edition), 2010, 37(4):94-97(in Chinese).

    Google Scholar Pub Med

    [73] 胡波, 苏海佳, 谭天伟. 改性菌丝体对Ni2+的吸附特性研究[J]. 环境污染治理技术与设备, 2003(10):23-26. HU B, SU H J, TAN T W. Study of adsorption property of modified mycelial biomass to Ni2 +[J]. Technologies and Equipment for Environmental Pollution Control, 2003(10):23-26(in Chinese).

    Google Scholar Pub Med

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(3224) PDF downloads(85) Cited by(0)

Access History

Treatment of antibiotic mycelial fermentation residue: The critical review

Fund Project: Supported by the National Key R & D Program of China(2016YFE0201800), National Natural Science Foundation of China(51676138, 51878557)and Tianjin Science and Technology Project(18YFJLCG00090, 18YFHBZC00020).

Abstract: Antibiotic mycelial fermentation residue (AMFR) is a solid waste generated during the fermentation for the production of antibiotic drugs. As a state-specified hazardous waste, it causes huge environmental pollution due to the large yields, high contaminants, and the inevitable residual of antibiotics. The clean treatments of AMFR are facing difficulties. In this paper, the types, characteristics and perniciousness of AMFR are reviewed, and the feasible thermochemical technologies and non-thermochemical technologies are also introduced. Particularly, the thermochemical technologies are systematic summarized, including incineration, hydrothermal treatment and pyrolysis /gasification. The general evaluations, environmental impact, applications and research progress of thermochemical technologies are comparatively analyzed. At the same time, it is hoped to provide some useful information for treating AMFR. For example, torrefaction, as a pretreatment, can eliminate the biological hazards and provide benefits for downstream thermal treatments. With this review, it shed a light on AMDR treatment during production process of antibiotic drugs, and promoted the sustainable and sound development of pharmaceutical industry of our country.

Reference (73)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint