2021 Volume 40 Issue 9
Article Contents

CHEN Dandan, TAN Lu, NIE Zimeng, WAN Zixue, SHU Qian, Yang Haijun. Evaluation and source analysis of heavy metal pollution in the soil around typical metal smelting and mining enterprises in Hunan Province[J]. Environmental Chemistry, 2021, 40(9): 2667-2679. doi: 10.7524/j.issn.0254-6108.2021010901
Citation: CHEN Dandan, TAN Lu, NIE Zimeng, WAN Zixue, SHU Qian, Yang Haijun. Evaluation and source analysis of heavy metal pollution in the soil around typical metal smelting and mining enterprises in Hunan Province[J]. Environmental Chemistry, 2021, 40(9): 2667-2679. doi: 10.7524/j.issn.0254-6108.2021010901

Evaluation and source analysis of heavy metal pollution in the soil around typical metal smelting and mining enterprises in Hunan Province

  • Corresponding author: Yang Haijun, 1227677453@qq.com
  • Received Date: 09/01/2021
    Available Online: 27/09/2021
    Fund Project: the Natural Science Foundation Project of Hunan Province (2020JJ6059)
  • In order to understand the current situation of heavy metal pollution in soil around typical metal smelting and mining industry in Hunan Province, 30 enterprises in the metal smelting and mining industry were selected as the research objects in this study, single factor pollution index, Nemeiro pollution index, potential ecological risk index and “Agricultural Land Soil Pollution Risk Control Standards” (GB15618-2018) were used to comprehensively evaluate the polution status of the soil cadmium (Cd), mercury (Hg), arsenic (As), lead (Pb), chromium (Cr), copper (Cu), nickel (Ni), zinc (Zn), and the main components method and the correlation method are also used to explore the sources of heavy metal pollution. The results showed that: The average values of Cd, Hg, As, Cu, Pb, Cr, Zn, and Ni in the samples in the contaminated area were 3.22, 0.985, 65.63, 67.43, 165.53, 94.07, 328, 43.9 mg·kg−1, it is 2.01, 3.66, 1.89, 1.98, 1.98, 1.14, 1.58, 1.39 times of the mean value of the corresponding heavy metal elements in the control point samples; The single factor pollution index (Pi) of heavy metals is Cd>As>Pb>Zn>Cu>Ni>Cr>Hg in dry land, Cd>Hg>Pb>As>Zn>Ni>Cu>Cr in paddy fields, Cd>Zn>As>Pb>Cu>Cr>Ni>Hg in wild grassland, and the order of the heavy metal Pi in woodland is the same as that of dry land. Results of Nemeiro Comprehensive Pollution Index show that the proportion of heavy metal pollution in paddy field, dry land, wasteland and woodland is 44.4%, 48.1%, 52.4%, and 31.6% respectively. The comprehensive evaluation results of the potential ecological risk index showed that the risk levels of dryland, paddy field, wasteland and forestland were 83.3%, 74%, 71.4% and 47.4% in intensity or above. The results of the risk control standard evaluation of agricultural land found that among the 93 soil samples in the contaminated areas, the proportion of samples in the priority protection category, safe use category and strict control category was 10.8%, 50.5% and 38.7% respectively. The results of source analysis showed that Cd, As, Pb, Zn, Cu in the contaminated soil may be influenced by agricultural activities, industrial activities and transportation, Cr may come from the control of the parent material of the soil, and Hg and Ni may be affected by industrial activities. The results show that the pollution control of heavy metals in the soil around the typical metal smelting and mining industry in Hunan Province should focus on strengthening the control and treatment of pollution sources of Cd, Hg, As, Pb and Zn.
  • 加载中
  • [1] 张小敏, 张秀英, 钟太洋, 等. 中国农田土壤重金属富集状况及其空间分布研究 [J]. 环境科学, 2014, 35(2): 692-703. ZHANG X M, ZHANG X Y, ZHONG T Y, et al. Spatial distribution and accumulation of heavy metal in arable land soil of China [J]. Environmental Science, 2014, 35(2): 692-703(in Chinese).

    Google Scholar Pub Med

    [2] XU Z, MI W B, MI N, et al. Characteristics and sources of heavy metal pollution in desert steppe soil related to transportation and industrial activities [J]. Environmental Science and Pollution Research International, 2020, 27(31): 38835-38848. doi: 10.1007/s11356-020-09877-9

    CrossRef Google Scholar Pub Med

    [3] 柴磊, 王新, 马良, 等. 基于PMF模型的兰州耕地土壤重金属来源解析 [J]. 中国环境科学, 2020, 40(9): 3919-3929. doi: 10.3969/j.issn.1000-6923.2020.09.025 CHAI L, WANG X, MA L, et al. Sources appointment of heavy metals in cultivated soils of Lanzhou based on PMF models [J]. China Environmental Science, 2020, 40(9): 3919-3929(in Chinese). doi: 10.3969/j.issn.1000-6923.2020.09.025

    CrossRef Google Scholar Pub Med

    [4] WANG P, ZHANG L J, LIN X, et al. Spatial distribution, control factors and sources of heavy metal in the surface sediments of Fudu Estuary waters, East Liaodong Bay, China [J]. Marine Pollution Bulletin, 2020, 156: 111279. doi: 10.1016/j.marpolbul.2020.111279

    CrossRef Google Scholar Pub Med

    [5] 王金霞, 罗乐, 陈玉成, 等. 三峡库区库尾典型农用地土壤重金属污染特征及潜在风险 [J]. 农业环境科学学报, 2018, 37(12): 2711-2717. doi: 10.11654/jaes.2018-0844 WANG J X, LUO L, CHEN Y C, et al. The characteristics and potential risk of heavy metals pollution in farmland soil of an agricultural land in the Three Gorges Reservoir area [J]. Journal of Agro-Environment Science, 2018, 37(12): 2711-2717(in Chinese). doi: 10.11654/jaes.2018-0844

    CrossRef Google Scholar Pub Med

    [6] 陈卫平, 杨阳, 谢天, 等. 中国农田土壤重金属污染防治挑战与对策 [J]. 土壤学报, 2018, 55(2): 261-272. CHEN W P, YANG Y, XIE T, et al. Challenges and countermeasures for heavy metal pollution control in farmlands of China [J]. Acta Pedologica Sinica, 2018, 55(2): 261-272(in Chinese).

    Google Scholar Pub Med

    [7] PAN Y J, DING L, XIE S Y, et al. Spatiotemporal simulation, early warning, and policy recommendations of the soil heavy metal environmental capacity of the agricultural land in a typical industrial city in China: Case of Zhongshan City [J]. Journal of Cleaner Production, 2021, 285: 124849. doi: 10.1016/j.jclepro.2020.124849

    CrossRef Google Scholar Pub Med

    [8] 赵奕然, 谷建辉, 万卫, 等. 株洲城郊农田土壤重金属污染特征与Pb同位素示踪 [J]. 环境科学学报, 2020, 40(3): 1074-1084. ZHAO Y R, GU J H, WAN W, et al. The features of heavy metal contamination and possible sources from Pb isotopic evidence in farmland soils, Zhuzhou suburb [J]. Acta Scientiae Circumstantiae, 2020, 40(3): 1074-1084(in Chinese).

    Google Scholar Pub Med

    [9] YANG H R, WANG F E, YU J, et al. An improved weighted index for the assessment of heavy metal pollution in soils in Zhejiang, China [J]. Environmental Research, 2021, 192: 110246. doi: 10.1016/j.envres.2020.110246

    CrossRef Google Scholar Pub Med

    [10] 段淑辉, 周志成, 刘勇军, 等. 湘中南农田土壤重金属污染特征及源解析 [J]. 中国农业科技导报, 2018, 20(6): 80-87. DUAN S H, ZHOU Z C, LIU Y J, et al. Distribution and source apportionment of soil heavy metals in central-south of Hunan Province [J]. Journal of Agricultural Science and Technology, 2018, 20(6): 80-87(in Chinese).

    Google Scholar Pub Med

    [11] 沈洪艳, 安冉, 师华定, 等. 湖南某典型流域农用地土壤重金属污染及影响因素 [J]. 环境科学研究, 2021, 34(3): 715-724. SHEN H Y, AN R, SHI H D, et al. Heavy metal pollution and its influencing factors in agricultural land in a typical watershed in Hunan Province [J]. Research of Environmental Sciences, 2021, 34(3): 715-724(in Chinese).

    Google Scholar Pub Med

    [12] 刘智峰, 呼世斌, 宋凤敏, 等. 陕西某铅锌冶炼区土壤重金属污染特征与形态分析 [J]. 农业环境科学学报, 2019, 38(4): 818-826. doi: 10.11654/jaes.2018-1097 LIU Z F, HU S B, SONG F M, et al. Pollution characteristics and speciation analysis of heavy metals in soils around a lead-zinc smelter area in Shaanxi Province, China [J]. Journal of Agro-Environment Science, 2019, 38(4): 818-826(in Chinese). doi: 10.11654/jaes.2018-1097

    CrossRef Google Scholar Pub Med

    [13] SUN Z H, XIA D X, WANG P, et al. Heavy metal pollution caused by small-scale metal ore mining activities: A case study from a polymetallic mine in South China [J]. Science of the Total Environment, 2018, 639: 217-227. doi: 10.1016/j.scitotenv.2018.05.176

    CrossRef Google Scholar Pub Med

    [14] 许友泽, 刘锦军, 成应向, 等. 湘江底泥重金属污染特征与生态风险评价 [J]. 环境化学, 2016, 35(1): 189-198. doi: 10.7524/j.issn.0254-6108.2016.01.2015072201 XU Y Z, LIU J J, CHENG Y X, et al. Characteristics and ecological risk assessment of heavy metals contamination in sediments of the Xiangjiang River [J]. Environmental Chemistry, 2016, 35(1): 189-198(in Chinese). doi: 10.7524/j.issn.0254-6108.2016.01.2015072201

    CrossRef Google Scholar Pub Med

    [15] 冯依涛, 阎秀兰, 佟雪娇, 等. 再生铝企业周边农田土壤与农作物重金属含量特征分析 [J]. 农业环境科学学报, 2020, 39(1): 87-96. doi: 10.11654/jaes.2019-0897 FENG Y T, YAN X L, TONG X J, et al. Analysis on characteristics of heavy metals content in farmland soils and crops around recycled aluminum enterprises [J]. Journal of Agro-Environment Science, 2020, 39(1): 87-96(in Chinese). doi: 10.11654/jaes.2019-0897

    CrossRef Google Scholar Pub Med

    [16] 周艳, 陈樯, 邓绍坡, 等. 西南某铅锌矿区农田土壤重金属空间主成分分析及生态风险评价 [J]. 环境科学, 2018, 39(6): 2884-2892. ZHOU Y, CHEN Q, DENG S P, et al. Principal component analysis and ecological risk assessment of heavy metals in farmland soils around a Pb-Zn mine in southwestern China [J]. Environmental Science, 2018, 39(6): 2884-2892(in Chinese).

    Google Scholar Pub Med

    [17] NIU L L, YANG F X, XU C, et al. Status of metal accumulation in farmland soils across China: From distribution to risk assessment [J]. Environmental Pollution, 2013, 176: 55-62. doi: 10.1016/j.envpol.2013.01.019

    CrossRef Google Scholar Pub Med

    [18] 贾锐鱼, 朱万勇, 李楠, 等. 西安市公园土壤及灰尘中重金属污染与生态风险评价 [J]. 水土保持研究, 2015, 22(5): 316-320. JIA R Y, ZHU W Y, LI N, et al. Heavy metal contents and ecological risk assessment of soils and dust in urban Parks of Xi'an city [J]. Research of Soil and Water Conservation, 2015, 22(5): 316-320(in Chinese).

    Google Scholar Pub Med

    [19] 周萍, 文安邦, 史忠林, 等. 三峡库区不同土地利用土壤重金属分布特征与污染评价 [J]. 农业机械学报, 2017, 48(7): 207-213. doi: 10.6041/j.issn.1000-1298.2017.07.026 ZHOU P, WEN A B, SHI Z L, et al. Distribution characteristics and pollution evaluation of soil heavy metals of different land use types in Three Gorges reservoir region [J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(7): 207-213(in Chinese). doi: 10.6041/j.issn.1000-1298.2017.07.026

    CrossRef Google Scholar Pub Med

    [20] 赵斌, 朱四喜, 李相兴, 等. 贵州草海不同土地利用方式表层土壤重金属污染现状评估 [J]. 环境化学, 2018, 37(10): 2219-2229. doi: 10.7524/j.issn.0254-6108.2018042603 ZHAO B, ZHU S X, LI X X, et al. Assessment of heavy metal pollution in the surface soils of different land use patterns in Caohai, Guizhou [J]. Environmental Chemistry, 2018, 37(10): 2219-2229(in Chinese). doi: 10.7524/j.issn.0254-6108.2018042603

    CrossRef Google Scholar Pub Med

    [21] 李志涛, 王夏晖, 何俊, 等. 四川省江安县某硫铁矿区周边农田土壤重金属来源解析及污染评价 [J]. 农业环境科学学报, 2019, 38(6): 1272-1279. doi: 10.11654/jaes.2018-1076 LI Z T, WANG X H, HE J, et al. Source identification and pollution assessment of heavy metals in farmland soils around a pyrite mining area in Jiang'an County, Sichuan Province, China [J]. Journal of Agro-Environment Science, 2019, 38(6): 1272-1279(in Chinese). doi: 10.11654/jaes.2018-1076

    CrossRef Google Scholar Pub Med

    [22] YANG Y, YANG X, HE M J, et al. Beyond mere pollution source identification: Determination of land covers emitting soil heavy metals by combining PCA/APCS, GeoDetector and GIS analysis [J]. CATENA, 2020, 185: 104297. doi: 10.1016/j.catena.2019.104297

    CrossRef Google Scholar Pub Med

    [23] KANG Z M, WANG S L, QIN J H, et al. Pollution characteristics and ecological risk assessment of heavy metals in paddy fields of Fujian Province, China [J]. Scientific Reports, 2020, 10: 12244. doi: 10.1038/s41598-020-69165-x

    CrossRef Google Scholar Pub Med

    [24] 陈佳林, 李仁英, 谢晓金, 等. 南京市绿地土壤重金属分布特征及其污染评价[J/OL]. 环境科学: 1-12[2020-11-22]. https://doi.org/10.13227/j.hjkx.202005203. CHEN J L, LI R Y, XIE X J, et al.Distribution characteristics and pollution evaluation of heavy metals in greenbelt soils of Nanjing City[J/OL].Environmental Science: 1-12[2020-11-22]. http://doi.org/10.13227/j.hjkx.202005203 (in Chinese).

    Google Scholar Pub Med

    [25] 方晓波, 史坚, 廖欣峰, 等. 临安市雷竹林土壤重金属污染特征及生态风险评价 [J]. 应用生态学报, 2015, 26(6): 1883-1891. FANG X B, SHI J, LIAO X F, et al. Heavy metal pollution characteristics and ecological risk analysis for soil in Phyllostachys praecox stands of Lin'an [J]. Chinese Journal of Applied Ecology, 2015, 26(6): 1883-1891(in Chinese).

    Google Scholar Pub Med

    [26] 潘佑民. 湖南土壤背景值及研究方法[M]. 北京: 中国环境科学出版社, 1988. PAN Y M. [M]. Beijing: China Environment Science Press, 1988(in Chinese).

    Google Scholar Pub Med

    [27] 陈锦芳, 方宏达, 巫晶晶, 等. 基于PMF和Pb同位素的农田土壤中重金属分布及来源解析 [J]. 农业环境科学学报, 2019, 38(5): 1026-1035. doi: 10.11654/jaes.2018-1170 CHEN J F, FANG H D, WU J J, et al. Distribution and source apportionment of heavy metals in farmland soils using PMF and lead isotopic composition [J]. Journal of Agro-Environment Science, 2019, 38(5): 1026-1035(in Chinese). doi: 10.11654/jaes.2018-1170

    CrossRef Google Scholar Pub Med

    [28] 生态环境部, 国家市场监督管理总局. 中华人民共和国国家标准: 土壤环境质量 农用地土壤污染风险管控标准 GB 15618—2018[S]. 北京: 中国标准出版社, 2018. Ministry of ecology and environment of the People′s Republic of China, . National Standard (Mandatory) of the People's Republic of China: Soil environmental quality Risk control standard for soil contamination of agricultural land.GB 15618—2018[S]. Beijing: Standards Press of China, 2018 (in Chinese).

    Google Scholar Pub Med

    [29] 李玉峰, 赵中秋, 祝培甜, 等. 基于土壤重金属污染风险管控的土壤质量评价: 以某县级市为例 [J]. 地学前缘, 2019, 26(6): 207-215. LI Y F, ZHAO Z Q, ZHU P T, et al. Soil quality assessment based on risk control of heavy metal pollution in soil: A case study of an industrial city in China [J]. Earth Science Frontiers, 2019, 26(6): 207-215(in Chinese).

    Google Scholar Pub Med

    [30] 甘国娟, 刘伟, 邱亚群, 等. 湘中某冶炼区农田土壤重金属污染及生态风险评价 [J]. 环境化学, 2013, 32(1): 132-138. doi: 10.7524/j.issn.0254-6108.2013.01.020 GAN G J, LIU W, QIU Y Q, et al. Heavy metal pollution and ecological risk assessment of the paddy soils in a smelting area in Central Hunan [J]. Environmental Chemistry, 2013, 32(1): 132-138(in Chinese). doi: 10.7524/j.issn.0254-6108.2013.01.020

    CrossRef Google Scholar Pub Med

    [31] 李岩. 典型工业聚集区土壤重金属污染特征及成因研究[D]. 北京: 中国地质大学(北京), 2020. LI Y.Study on the characteristics and causes of heavy metal pollution in typical industrial areas[D].Beijing: China University of Geosciences, 2020(in Chinese).

    Google Scholar Pub Med

    [32] 张晓文. 湖南某工业区土壤及水稻重金属污染源解析[D]. 北京: 中国农业科学院, 2019. ZHANG X W. Apportionment of heavy metal pollution sources of soil and rice in an industrial area of Hunan Province[D]. Beijing: Chinese Academy of Agricultural Sciences, 2019(in Chinese).

    Google Scholar Pub Med

    [33] 穆莉, 王跃华, 徐亚平, 等. 湖南省某县稻田土壤重金属污染特征及来源解析 [J]. 农业环境科学学报, 2019, 38(3): 573-582. doi: 10.11654/jaes.2018-0791 MU L, WANG Y H, XU Y P, et al. Pollution characteristics and sources of heavy metals in paddy soils in a County of Hunan Province, China [J]. Journal of Agro-Environment Science, 2019, 38(3): 573-582(in Chinese). doi: 10.11654/jaes.2018-0791

    CrossRef Google Scholar Pub Med

    [34] 魏迎辉, 李国琛, 王颜红, 等. PMF模型的影响因素考察: 以某铅锌矿周边农田土壤重金属源解析为例 [J]. 农业环境科学学报, 2018, 37(11): 2549-2559. doi: 10.11654/jaes.2018-0492 WEI Y H, LI G C, WANG Y H, et al. Investigating factors influencing the PMF model: A case study of source apportionment of heavy metals in farmland soils near a lead-zinc ore [J]. Journal of Agro-Environment Science, 2018, 37(11): 2549-2559(in Chinese). doi: 10.11654/jaes.2018-0492

    CrossRef Google Scholar Pub Med

    [35] LIU L L, LIU Q Y, MA J, et al. Heavy metal(loid)s in the topsoil of urban Parks in Beijing, China: Concentrations, potential sources, and risk assessment [J]. Environmental Pollution, 2020, 260: 114083. doi: 10.1016/j.envpol.2020.114083

    CrossRef Google Scholar Pub Med

    [36] 徐源, 师华定, 王超, 等. 湖南省郴州市苏仙区重点污染企业影响区的土壤重金属污染源解析[J/OL]. 环境科学研究: 1-13[2020-11-22].https://doi.org/10.13198/j.issn.1001-6929.2020.11.03. XU Y, SHI H D, WANG C, et al. Heavy metal pollution sources in soil affected by key pollution enterprises in Suxian district, Chenzhou City, Hunan Province[J/OL].Research of Environmental Sciences: 1-13[2020-11-22]. https://doi.org/10.13198/j.issn.1001-6929.2020.11.03 (in Chinese).

    Google Scholar Pub Med

    [37] 张连科, 李海鹏, 黄学敏, 等. 包头某铝厂周边土壤重金属的空间分布及来源解析 [J]. 环境科学, 2016, 37(3): 1139-1146. ZHANG L K, LI H P, HUANG X M, et al. Soil heavy metal spatial distribution and source analysis around an aluminum plant in Baotou [J]. Environmental Science, 2016, 37(3): 1139-1146(in Chinese).

    Google Scholar Pub Med

    [38] 陈雅丽, 翁莉萍, 马杰, 等. 近十年中国土壤重金属污染源解析研究进展 [J]. 农业环境科学学报, 2019, 38(10): 2219-2238. doi: 10.11654/jaes.2018-1449 CHEN Y L, WENG L P, MA J, et al. Review on the last ten years of research on source identification of heavy metal pollution in soils [J]. Journal of Agro-Environment Science, 2019, 38(10): 2219-2238(in Chinese). doi: 10.11654/jaes.2018-1449

    CrossRef Google Scholar Pub Med

    [39] WU J, LI J, TENG Y G, et al. A partition computing-based positive matrix factorization (PC-PMF) approach for the source apportionment of agricultural soil heavy metal contents and associated health risks [J]. Journal of Hazardous Materials, 2020, 388: 121766. doi: 10.1016/j.jhazmat.2019.121766

    CrossRef Google Scholar Pub Med

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(3)  /  Tables(9)

Article Metrics

Article views(2250) PDF downloads(62) Cited by(0)

Access History

Evaluation and source analysis of heavy metal pollution in the soil around typical metal smelting and mining enterprises in Hunan Province

Fund Project: the Natural Science Foundation Project of Hunan Province (2020JJ6059)

Abstract: In order to understand the current situation of heavy metal pollution in soil around typical metal smelting and mining industry in Hunan Province, 30 enterprises in the metal smelting and mining industry were selected as the research objects in this study, single factor pollution index, Nemeiro pollution index, potential ecological risk index and “Agricultural Land Soil Pollution Risk Control Standards” (GB15618-2018) were used to comprehensively evaluate the polution status of the soil cadmium (Cd), mercury (Hg), arsenic (As), lead (Pb), chromium (Cr), copper (Cu), nickel (Ni), zinc (Zn), and the main components method and the correlation method are also used to explore the sources of heavy metal pollution. The results showed that: The average values of Cd, Hg, As, Cu, Pb, Cr, Zn, and Ni in the samples in the contaminated area were 3.22, 0.985, 65.63, 67.43, 165.53, 94.07, 328, 43.9 mg·kg−1, it is 2.01, 3.66, 1.89, 1.98, 1.98, 1.14, 1.58, 1.39 times of the mean value of the corresponding heavy metal elements in the control point samples; The single factor pollution index (Pi) of heavy metals is Cd>As>Pb>Zn>Cu>Ni>Cr>Hg in dry land, Cd>Hg>Pb>As>Zn>Ni>Cu>Cr in paddy fields, Cd>Zn>As>Pb>Cu>Cr>Ni>Hg in wild grassland, and the order of the heavy metal Pi in woodland is the same as that of dry land. Results of Nemeiro Comprehensive Pollution Index show that the proportion of heavy metal pollution in paddy field, dry land, wasteland and woodland is 44.4%, 48.1%, 52.4%, and 31.6% respectively. The comprehensive evaluation results of the potential ecological risk index showed that the risk levels of dryland, paddy field, wasteland and forestland were 83.3%, 74%, 71.4% and 47.4% in intensity or above. The results of the risk control standard evaluation of agricultural land found that among the 93 soil samples in the contaminated areas, the proportion of samples in the priority protection category, safe use category and strict control category was 10.8%, 50.5% and 38.7% respectively. The results of source analysis showed that Cd, As, Pb, Zn, Cu in the contaminated soil may be influenced by agricultural activities, industrial activities and transportation, Cr may come from the control of the parent material of the soil, and Hg and Ni may be affected by industrial activities. The results show that the pollution control of heavy metals in the soil around the typical metal smelting and mining industry in Hunan Province should focus on strengthening the control and treatment of pollution sources of Cd, Hg, As, Pb and Zn.

  • 土壤重金属污染是人类面临的重要环境问题之一,已影响到农产品质量安全和农田生态系统健康[1],进而危害到人类健康。所以,土壤重金属污染评价、源解析及治理的研究越来越多。研究者采用单因子污染指数法[2]、内梅罗综合污染指数法[3]、潜在生态风险指数法[4]以及2018年制定的针对农用地和企业用地的污染物风险管控标准[5]对土壤环境质量进行评估,受重金属污染的风险水平评判不再局限于简单的含量特征描述,而是从某种重金属元素污染研究过渡到重金属复合污染研究,尤其在近年土壤污染风险评价中,更强调了不同重金属元素的毒性[6]、研究地的土壤重金属背景值与实测值,使得土壤重金属污染等级评价更趋科学,为受重金属污染土壤的防控及治理提供了科学依据。

    在探究土壤重金属污染特征及其影响因素时,研究者发现土壤重金属来源主要受工业[7]、农业[8]及其成土母质[9]等诸多因素影响。段淑辉等[10]利用UNIMX模型对农田重金属污染源解析发现,土壤表层Zn、Cu均主要来源于施肥和灌溉等农业活动。沈洪艳等[11]对湖南某典型流域农用地土壤重金属的污染源解析显示,流域农田土壤中Cd、As、Pb污染受工业生产活动、交通运输、农业活动的综合影响,Hg、Cr主要来源于成土母质等自然因素。大多数研究针对特定区域土壤重金属污染评价及来源解析,比如采矿区[12-13]、某流域[14-15]、重点污染企业[16]、农产品产地[17]、公园[18]等周边土壤重金属污染评价及来源探究。然而在不同的环境体系中不同重金属元素含量会受到多种因素的影响[19],进而导致不同区域重金属污染具有一定差异性,其中农田土壤重金属污染差异尤为明显[20-22]。因此研究金属采选与冶炼企业周边农田土壤重金属污染特征及来源解析对了解土壤重金属富集规律和防治重金属污染有重要意义。

    本研究以湖南30家典型有色金属采选与冶炼企业周边表层土壤为研究对象,采用单因子污染指数法、内梅罗综合污染指数法及《农用地土壤污染风险管控标准》(GB15618-2018)评价重金属污染程度,应用潜在生态风险指数法评价重金属的潜在生态风险,利用主成分分析法与相关性法对污染区重金属来源进行解析。以期为湖南典型有色金属采选与冶炼企业周边土壤重金属污染控制及其治理提供科学依据。

1.   材料与方法(Materials and methods)
  • 选取湖南省30家典型金属采选与冶炼企业周边土壤为研究对象,依据企业废气、废水排放特征与废渣堆积区所在位置,并结合企业周围土地利用现状,在每个企业所在地年主导风向下风口和企业废水排放下游布设土壤采集点(表1)。

    每个土壤样品采集点位区域为30 m×30 m(长×宽),采用5点蛇形采样法采集5个点的表层0—20 cm土壤样品混合均匀,保留2 kg,为1个污染监测点土壤样品,共采集污染点土壤样品112个,其中耕地72个(旱地54个、水田18个)、荒草地21个、林地19个。在距离工厂周边 2000 m以外主导上风向布设25个对照点,对照点与监测点土地利用类型、土壤类型尽量一致。其中耕地19个(旱地13个、水田6个)、荒草地1个、林地5个。

  • 土壤样品带回实验室后采用自然风干、粗磨和分样、细磨和分样、过粒径0.15 mm(100目)筛处理。土壤样品pH测定采用《土壤元素近代分析测试方法》(NY/T 1121.2-2006);镉采用原子吸收分光光度法(GB/T 17141-1997),汞采用微波消解/原子荧光法(HJ 680-2013),砷、铅、铬、铜、锌、镍采用波长色散X射线荧光光谱法(HJ 780-2015)。以不少于10%的比例实施精密度和准确度控制,覆盖全部监测项目,重金属项目和pH项目实验室内部平行样的总合格率均为100%,带标的总合格率均为100%。质控平行样理化3项合格率75.2%、常规8项重金属合格率96.3%、重金属项目带标的总合格率均为100%。质量控制样品的测试结果准确性满足《土壤环境监测质量监督检查技术规定》中合格率不低于85%的要求,实验室内测试结果的精密度和准确度满足该规定中合格率达到100%的要求。

  • 内梅罗污染指数评价法为常用的土壤污染评价法,考虑了不同重金属元素含量对土壤环境的影响,突出了污染最严重重金属的污染危害,比较全面、客观地反映土壤的污染状况[23]

    单因子污染指数和内梅罗污染指数计算方法见公式(1)和公式(2)。评价污染等级见表2

    式中,$ {P}_{i} $为土壤中重金属i的单项污染指数,$ {C}_{i} $为土壤中重金属i的含量,$ {S}_{i} $为土壤中重金属i含量的评价标准[24]$ {P}_{{\rm{ave}}} $为单因子指数的平均值,$ {P}_{{\rm{max}}} $为单因子污染指数中的最大值,$ {P}_{{\rm{N}}} $为土壤中重金属的内梅罗污染指数。

  • Hakanson潜在生态风险指数法[25]综合考虑了重金属性质、环境行为特点、含量水平、生物毒性、生态效应等因素,可用于评价土壤和沉积物中重金属的潜在生态风险,其计算方法见公式(3)—(5),Hakanson生态风险指数分级见表3

    式中,$ {C}_{d}^{i} $为样品实测浓度,mg.kg−1,$ {C}_{r}^{i} $为土壤中i元素的背景值,为湖南省重金属背景值(Cd、Hg、As、Cu、Pb、Cr、Zn、Ni背景值分别为0.142、0.09、12.8、25.0、30、58.3、84.2、27.8 mg.kg−1)[26]$ {T}_{r}^{i} $为第i种重金属元素的毒性响应系数,$ {E}_{r}^{i} $为第i种重金属元素潜在生态风险系数,$ {C}_{f}^{i} $为第i种重金属元素的污染系数,$ \mathrm{R}\mathrm{I} $为多种重金属污染物潜在生态风险指数。毒性影响因子采用Hakanson制定的标准化重金属响应系数为评价依据(Cd为30、Hg为40、As为10、Pb为5、Cr为2、Cu为5、Ni为5、Zn为1)[27]

  • 采用《土壤环境质量 农用地土壤污染风险管控标准(试行)》(GB 15618—2018)(见表4)对污染区农用地土壤样品进行风险管控评价[28]。当样品中8种重金属元素含量全部小于或等于风险筛选值时,土壤属于优先保护类(用A表示),土壤风险可以忽略;当土壤中Cd、Hg、As、Pb、Cr的任意一种含量高于风险筛选值并且小于等于风险管制值时,土壤存在污染风险,但属于安全利用类(用B表示);当土壤中Cd、Hg、As、Pb、Cr的任意一种含量大于风险管制值时,土壤污染风险高,属于严格管控类(用C表示)[29]

  • 采用Excel对重金属含量数据进行统计分析;相关性分析和主成分分析由SPSS 20.0完成。

2.   结果与讨论(Results and discussion)
  • 企业周边污染监测点所有土壤样品中Cd、Hg、As、Pb、Cr、Cu、Ni、Zn的含量见表5。从表5可知,金属采选与冶炼企业周边112个污染监测点样品中Cd、Hg、As、Cu、Pb、Cr、Zn、Ni均值分别为3.221、0.985、65.6、67.4、165.5、94、329、43.9 mg·kg−1,与湖南省土壤背景值[26]对比发现,监测点样品中8种元素均值都超过背景值,分别为对应重金属元素背景值的22.7、11、5.1、2.7、5.5、1.6、3.9、1.6倍;对照点样品中Cd、Hg、As、Cu、Pb、Cr、Zn、Ni均值分别为背景值的11.3、2.9、2.7、1.4、2.77、1.4、2.5、1.1倍,间接说明了金属采选与冶炼企业生产活动对周边表层土壤形成为Cd、Hg、As、Zn、Pb的污染。从变异系数看,污染监测点样品中Cd、Hg、As、Cu、Pb、Zn、Ni均属于强变异,Cr为中等变异。25个对照点土壤样品中Cd、As、Pb、Zn均属于强变异,Hg、Cu、Cr、Ni属于中等变异。从表5还可知,除Cr、Ni外,污染监测点样品中Cd、Hg、Cu、Pb、Zn均值都明显高于对照点,说明金属采选与冶炼企业生产活动对周边土壤形成了Cd、Hg、Cu、Pb、Zn的污染。从各用地类型样品中Cd、Hg、As、Cu、Pb、Cr、Zn、Ni含量看,不同用地类型土壤中Cd、Hg、As等均存在一定差异性。

  • 不同用地现状土壤重金属单因子污染指数($ {P}_{i} $)评价结果见表6。从表6可知,旱地土壤样品重金属元素$ {P}_{i} $均值大小依次为Cd>As>Pb>Zn>Cu>Ni>Cr>Hg,Cd的$ {P}_{i} $均值达到重度污染,As处于中度污染,Pb和Zn为轻度污染,Hg、Cu、Cr、Ni为无污染;水田样品重金属元素$ {P}_{i} $均值大小依次为Cd>Hg>Pb>As>Zn>Ni>Cu>Cr,Cd的$ {P}_{i} $均值达到重度污染,Hg处于中度污染,As、Pb、Zn为轻度污染,Cr、Cu、Ni为无污染;在荒草地样品中重金属元素$ {P}_{i} $均值大小依次为Cd>Zn>As>Pb>Cu>Cr>Ni>Hg,Cd的$ {P}_{i} $均值达到重度污染,Zn处于中度污染,As和Pb为轻度污染,Hg、Ni、Cu、Cr均为无污染;在林地样品中重金属元素$ {P}_{i} $均值大小顺序与旱地一致,Cd的$ {P}_{i} $均值达到重度污染,As为轻度污染,其余6种重金属元素均为无污染。综上可知,污染区所有土壤样品均受到Cd污染,应引起政府和企业的高度关注与重视。

  • 污染区土壤重金属内梅罗综合污染指数评价结果见图1。从图1可知,水田样品中重金属内梅罗综合污染指数处于清洁、警戒限、轻度污染、中度污染、重度污染等级的点位比例分别为0、5.6%、33.3%、16.7%、44.4%;旱地为7.4%、7.5%、18.5%、18.5%、48.1%;荒草地为19%、14.3%、9.5%、4.8%、52.4%;林地为26.3%、10.5%、31.6%、0、31.6%。在各用地类型样品中,60.1%的水田样品受到重金属中度及以上污染,主要为Cd、Hg污染;66.6%的旱地样品受到重金属中度及以上污染,主要为Cd、As污染;荒草地和林地分别有67.2%、31.6%的样品受到重金属中度及以上污染,其中荒草地主要受Cd、Zn污染,而林地受Cd污染。

  • 污染区各用地现状样品潜在生态风险指数结果见图2。从图2可知,Cd和Hg在旱地、水田、荒草地、林地土壤中处于强风险及以上危害水平点位的占比均较高,其余6种重金属主要处于轻微危害水平;旱地样品综合潜在生态风险处于轻微、中度、强度、很强、极强等级点位的比例分别为0、16.7%、27.8%、22.2%、33.3%;水田样品处于轻微、中度、强度、很强、极强等级点位的比例分别为5.6%、20.4%、25.9%、16.6%、31.5%;林地样品处于轻微、中度、强度、很强、极强等级点位的比例分别为10.5%、42.1%、5.3%、26.3%、15.8%;荒草地样品处于轻微、中度、强度、很强、极强等级点位的比例分别为9.6%、19%、19%、28.6%、23.8%。综上可知,污染区各用地类型样品综合潜在生态风险处于很强及以上等级所占比例的大小顺序依次为旱地>荒草地>水田>林地。

  • 污染区旱地、水田及荒草地重金属含量风险管控标准[28]评价结果见图3。从图3可知,在54个旱地样品中,Cd、Hg、As、Cu、Pb、Cr、Zn、Ni含量超筛选值的样品比例分别为40.7%、3.7%、35.2%、25.9%、27.8%、5.6%、37%、1.9%;Cd、Hg、As、Pb含量超管制值样品比例分别35.2%、1.9%、9.3%、5.6%;A、B、C类比例分别为9.2%、35.2%、55.6%。在18个水田样品中,Cd、Hg、As、Pb、Cu、Zn、Ni含量超筛选值的样品比例分别为55.6%、33.3%、50%、38.9%、5.6%、50%、11.1%;Cd、Hg、As、Pb含量超管制值样品的比例分别为16.7%、22.2%、5.6%、5.6%;Cr含量未超筛选值;A、B、C类比例分别为0、44.4%、55.6%。在21个荒草地样品中,Cd、As、Pb、Hg、Cr、Cu、Zn、Ni含量超筛选值样品比例分别为42.9%、38.1%、23.85%、4.8%、9.5%、14.3%、19%、9.5%;Cd、As、Pb含量超管制值样品的比例分别为28.6%、14.3%、4.8%;A、B、C类比例分别为23.8%、38.1%、38.1%。综上可知,93个农用地样品中,Cd含量超筛选值和管制值样品的比例分别为44.1%、30.1%,Hg分别为9.7%、5.4%,As分别为38.7%、9.7%,Pb分别为29%、5.4%;Cr、Cu、Zn、Ni含量超筛选值样品的比例分别5.4%、19.4%、35.5%、5.4%。所有样品中,A、B、C类比例分别为10.8%、50.5%、38.7%,其中C类样品比例大小顺序依次为:水田=旱地>荒草地。

    新邵云翔矿业、湖南柿竹园有色金属、湖南三立集团、湖南博隆矿业、保靖县锌业、郴州云湘矿冶、宝山有色金属矿业、湖南鑫海锌品8家企业周边监测点土壤样品重金属评价结果均属于C类;五矿湖南铁合金、衡阳市远景钨业2家企业周边监测点土壤样品重金属评价结果均属于B类;湖南辰州矿业(沅陵)和桃江县久通锑业2家企业周边监测点位均为A类;湖南安化渣滓溪矿业、花垣民乐锰矿区、溆浦江龙锰业、永州福嘉有色金属4家企业B、C类样点比例为2:1;湖南安圣电池、湖南证大予捷矿业、临湘湘岳矿业、邵阳市鼎盛矿业4家企业B、C类样点比例为1:2;湖南金石矿业(沅陵)和湖南金旺铋业2家企业B、C类样点各占一半;湖南水口山有色金属(柏坊铜矿)B、C类样点比例为1:3;冷水江锡矿山采矿区A、B、C类样点比例为1:4:5;湘潭锰矿红旗矿区A、B、C类样点比例为1:3:2;新邵县辰州锑业A类、B类、C类样点比例为1:1:2;湖南省星月颜料A、B、C类样点比例为1:1:1。综上所述,80%企业周边土壤重金属污染风险属于严格管控类。

  • 研究重金属之间的相关性可以推测重金属的来源是否相同。若它们之间存在相关性,则它们的来源可能相同,否则来源可能不同[30]。污染区土壤重金属含量Pearson相关性分析结果见表7。由表7可知,Cu与Cd、As、Pb、Zn均存在极显著相关关系,因此推断Cu与Cd、As、Pb、Zn具有较大的同源性。Ni与Zn存在极显著关系,说明他们可能有相同来源。Cr和Hg与各元素之间无较显著的相关性,可以推断与其他重金属元素来源途径不同。

  • 主成分分析可以将多个指标转化为几个综合指标来反映原始数据的信息,在土壤研究中用来区分各重金属来源。通过KMO检验(KMO值为0.607)和Bartlett球形检验P=0.000说明变量可以为因子分析提供合理基础。由表8可知,污染区前3个主成分反映61.540%的贡献率,因此对前3个主成分进行分析。由表9可知,第一主成分Cd、As、Cu、Pb、Zn具有较高的载荷,分别为0.609、0.706、0.701、0.786、0.577;第二主成分Cr的载荷为0.839;第三主成分主要反映了Hg和Ni的富集信息,载荷分别为0.747和0.651。

  • 由主成分分析可知,该结果与相关性分析具有较好的一致性。第一主成分的贡献率为33.516%,其中Cd、As、Cu、Pb、Zn具有较高的载荷,且这5种重金属含量都严重超标,主成分1反映以上5种重金属的作用。由于污染区处于铅锌、铁、金矿等采选业企业周边,土壤易受到企业废气、堆放的固体废物中Cd、Cu、As、Pb、Zn等重金属污染[31]。而且在化合物生产及合金加工过程中会有Cd、As、Cu、Pb、Zn等金属配合物和催化剂的使用,这些也是导致污染区重金属富集的原因。在冶炼金属的过程中会有预脱砷处理过程,这个过程必然导致As元素进入土壤,使As元素超标。张晓文等[32]研究指出,湖南省土壤中Cd、Zn、Pb主要来源于冶炼和尾矿废水排放,车辆尾气也会导致Pb的富集。在交通运输方面,Pb常被作为机动车污染源的指示性元素[33]。研究区周边有水稻、玉米、蔬菜等农作物的种植,农药和化肥中含有的Cu、As等元素会在土壤中残留,仅就磷肥而言,As的含量一般在20—50 mg·kg−1,其不合理施用会使土壤中As含量升高[34]。化肥、农药的使用会导致污染区耕地As、Cu的大量积累。根据以上分析可以推断主成分1为工业、交通和农业的混合源。

    第二主成分的贡献率为15.161%,Cr是主要的贡献因子。本研究中Cr与其他元素的相关性均不显著,变异系数为中等变异,说明受人为干扰程度比其他几种重金属低。同时,Cr的平均值也略高于湖南省背景值。大多数Cr的含量与自然背景接近,Cr可能受成土母质的控制[35]。徐源等[36]经过研究也确定了湖南Cr主要来自于土壤母质源。因此推断主成分2为土壤母质源。

    第三主成分的贡献率为12.864%,主要贡献来源于Hg和Ni。大多数研究认为土壤中Ni的人为污染源贡献较小,主要受母质的控制,但是也有学者提出Ni除受自然来源外,人为活动输入对Ni的含量也有一定影响[37]。综合2种统计方法可以得出Zn和Ni相关性极显著,具有同源性,因此推断Ni受到工业活动影响。陈雅丽等[38]通过近十年我国土壤源解析统计结果得知,Hg主要来源于工业活动及其产生的大气沉降。煤炭的燃烧对Hg元素的积累作用非常明显,研究区内存在大量的冶炼厂,煤炭作为冶炼的燃料之一,会不可避免的进入研究区内[39]。因此,推断主成分3为工业源。

3.   结论(Conclusion)
  • (1)湖南省采选与冶炼企业已对周边土壤重金属呈现出一定的富集,其中土壤中Cd、As、Pb污染严重。不同土地利用类型重金属含量存在差异,As在旱地中含量较高,Cu、Hg、Ni在水田中含量较高,Cd、Pb、Zn、Cr在荒草地中含量较高。

    (2)Cd在污染区土壤处于重度污染水平,达到了极强的生态危害。林地土壤重金属含量在一定程度上低于其他土地利用类型,受到污染最小。在农用地土壤中,水田样品重金属含量超筛选值和管制值的样品比例达100%。

    (3)综合相关性分析和主成分分析,推断Cd、As、Cu、Pb、Zn为农业、工业和交通的混合源,Cr主要来自于自然源,Ni受到工业活动影响,Hg主要来源于大气沉降。

    (4)湖南典型金属冶炼与采选行业企业已对其周边土壤形成了Cd、Hg、As、Pb、Zn的污染,应加强湖南金属冶炼与采选行业企业外排Cd、Hg、As、Pb、Zn的污染控制,并治理企业周边土壤重金属污染。

Figure (3)  Table (9) Reference (39)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint