-
温室效应会引起全球气候变暖和极端高温天气。我国交通运输温室气体排放占总排放的9%~10%,道路车辆贡献了70%~80%的温室气体排放[1-4];而欧盟与美国交通运输温室气体排放约占27.34%与34.95%[5]。随着化石燃料的日益紧张,重型燃气车成为越来越多道路车辆运输行业的选择之一。世界各国制定一系列措施控制温室气体的排放。当前执行的重型国六及欧六E阶段排放标准规定了更为严格的各种污染物排放限值,其中与五阶段相比温室气体CH4的排放限值严格了近55%,为500 mg·kWh−1。N2O是第三大温室气体 (前面为CO2、CH4) ,可在空气中长期存留并传输至大气平流层进而破坏臭氧层,其单分子增温潜势是CH4的14倍、CO2的298倍。当前轻型车国六标准 (GB 18352-2016) 限值为20~30 mg·km−1。
随着重型车市场保有量的增加,N2O排放已引起越来越多关注。欧盟委员会在即将发布的欧七排放标准提案中,计划将N2O列入监管之中。在国六标准下,现行技术中部分催化器可能排放较高浓度的N2O。故国内相关学者预测未来的排放法规可能将N2O与CO2、CH4等温室气体共同加以限制[6]。燃气机原机排放中的N2O浓度很低,主要为三元催化转化器 (three-way catalytic converter,TWC) 中的副反应产生[7]。唐飞等[8]基于铑基催化器研究发现N2O生成存在低温与高温2种反应路径。在低温下,通过CO还原NO反应生成N2O,而NH3通过H2还原NO反应生成N2O。从微观层面分析,汪永等[9]在无O2条件下,利用傅里叶变换红外光谱研究了钯催化剂上NH3与NO的反应,发现N2O生成与反应温度相关,在低温时通过HON中间产物反应生成,而在高温下,通过N•和 NO结合而生成。CANT等[10]通过模拟汽车尾气研究了铂、钯、铑基单贵金属在CeO2/Al2O3 2种载体催化剂中N2O生成与温度关系,发现铂基催化剂与铑基催化剂N2O生成温度较窄,分别约为300 ℃与250 ℃,而在钯基催化剂中N2O在温度约200 ℃时及300~500 ℃ 2个温度范围内产生。欧盟委员会研究中心成员用整车预测排放模型系统 (portable emission measurement system,PEMS) 测试方法对重型车的排放进行研究,发现N2O与NH3呈现良好相关性,其排放特性与环境温度相关,不同车辆类型工况其排放特性也存在差异[11-13]。
当前燃气机尾气主要通过废气再循环 (exhaust gas recirculation,EGR) 系统与铂/铑/钯基三元催化器进行净化处理。目前,国内外对N2O的研究大多集中在形成机理,亟需了解现有技术下的排放水平以进行控制研究。而国家对燃气成分尚未制定市售统一标准,不同组分污染物排放水平及衍生副产物N2O的排放量尚未见有效数据支持。本研究在考虑市售液态、气态不同组分燃气特点的基础上,通过搭建台架测试平台重点研究当前排放水平重型燃气机在WHTC工况下的N2O排放特性,包括冷态与热态不同启动条件下的排放情况,以期对燃气机排放N2O的源头控制提供参考。
重型燃气机铂/铑/钯基三元催化器N2O排放特性
N2O emission characteristics of Pt/Rh/Pd three-way catalyst for heavy duty gas engine
-
摘要: 以采用当量比燃烧+EGR+铂/铑/钯基TWC技术路线、且满足国六排放标准的重型燃气机为研究对象,基于全球统一瞬态实验循环 (WHTC) 工况对燃气机瞬态条件下不同燃气组分、排气温度、尾气组分的N2O排放特性进行定量研究。结果表明:N2O排放主要集中在冷态WHTC城市工况前140 s,热态WHTC总排放量约是冷态的1%;燃料组分对N2O生成有一定影响,含N2高的低热值G25燃气冷、热态N2O排放浓度均高于LNG、CNG,加权比排放量分别为15.3 mg·kWh−1、9.6 mg·kWh−1、7.5 mg·kWh−1;N2O生成与温度密切相关,主要生成区间为160~350 ℃,高温会抑制N2O生成;N2O与NH3的生成存在竞争关系,高于400 ℃时NH3生成量增加。本研究可为重型燃气机污染物N2O的源头控制提供参考。
-
关键词:
- 重型燃气机 /
- 三元催化转化器(TWC) /
- N2O /
- 排放特性
Abstract: Taking a heavy-duty gas engine using equivalent ratio combustion EGR Pt/Rh/Pd three-way Catalyst and meeting the National VI emission standards as the research object, this study quantitatively investigated the N2O emission characteristics of the gas engine under transient conditions with different gas compositions, exhaust temperatures, and tail gas compositions based on the global transient cycle WHTC. The results showed that N2O emissions were mainly concentrated in the first 140 seconds of the cold WHTC urban cycle, and the total N2O emissions of the hot WHTC are about 1% of the cold cycle. The fuel composition had a certain influence on N2O generation. The cold and hot N2O emission concentrations of G25 gas with high N2 content were higher than those of LNG and CNG, and the weighted specific emission was 15.3 mg·kWh−1, 9.6 mg·kWh−1, and 7.5 mg·kWh−1, respectively. N2O generation was closely related to temperature, and the main generation interval was between 160~350 ℃. High temperature inhibited N2O generation. There was a competitive relationship between N2O and NH3 generation, and the NH3 generation increased when the temperature was higher than 400 ℃. This study can provide data reference for the source control of N2O pollution in heavy-duty gas engine. -
表 1 燃气主要组分表
Table 1. Main components of gas
燃料组分 甲烷 乙烷 氮气 硫含量/(mg·m-³) LNG 99.83% 0.04% 0.11% <0.10 CNG 92.99% 3.97% 0.95% <1.00 G25 86.24% <0.01% 13.75% <10.00 表 2 大气因子及回归线偏差校对参数
Table 2. Calibration parameters of atmospheric factor and regression line deviation
校对项 WHTC冷态 WHTC热态 a1 a0 SEE r2 fa a1 a0 SEE r2 fa LNG 转速 0.981 19.393 19.321 0.983 1.003 0.983 18.474 16.971 0.987 1.006 扭矩 0.973 3.276 139.475 0.934 0.971 4.761 156.527 0.916 功率 0.985 0.457 18.187 0.926 0.984 0.6 19.644 0.915 CNG 转速 0.979 22.855 19.123 0.983 1.005 0.98 21.301 18.552 0.984 1.009 扭矩 0.974 3.15 138.98 0.934 0.97 5.293 152.063 0.92 功率 0.988 0.212 18.142 0.927 0.985 0.546 19.2 0.918 G25 转速 0.983 18.397 17.726 0.986 0.998 0.978 24.11 20.114 0.982 1.003 扭矩 0.971 4.413 147.031 0.924 0.953 19.859 147.193 0.921 功率 0.982 0.913 19.205 0.915 0.969 2.374 18.413 0.922 注:3种燃气WHTC循环相关偏差均满标准表C.2要求[14]。 表 3 燃气消耗量对比
Table 3. Comparison of gas consumption
kg·h−1 工况 冷热WHTC 热态WHTC 加权 LNG 11.695 11.49 11.519 CNG 12.172 11.845 11.891 G25 14.552 14.212 14.260 -
[1] 黄志辉, 纪亮, 尹洁, 等. 中国道路交通二氧化碳排放达峰路径研究[J]. 环境科学研究, 2022, 35(2): 385-393. doi: 10.13198/j.issn.1001-6929.2021.11.06 [2] 袁志逸, 李振宇, 康利平, 等. 中国交通部门低碳排放措施和路径研究综述[J]. 气候变化研究进展, 2021, 17(1): 27-35. [3] 刘俊伶, 孙一赫, 王克, 等. 中国交通部门中长期低碳发展路径研究[J]. 气候变化研究进展, 2018, 14(5): 513-521. [4] 生态环境部. 中华人民共和国气候变化第二次两年更新报告[R/OL][2019-07-01]. 2018. https://www.mee.gov.cn/ywgz/ydqhbh/wsqtkz/201907/P020190701765971866571.pdf [5] EEA. Greenhouse Gas Emissions from Transport in Europe[M]. Brussels: European Environment Agency, 2021. [6] 陈婷, 倪红, 谷雪景, 等. 中国移动源下阶段排放法规综述和分析[J]. 内燃机工程, 2018, 39(6): 24-30. doi: 10.13949/j.cnki.nrjgc.2018.06.003 [7] 郑婷婷, 王国栋, 顾绍晶, 等. 汽车尾气净化三效催化剂中N2O和NH3的生成及控制研究进展[J]. 化工进展, 2020, 39(6): 2399-2410. [8] 唐飞, 钱叶剑, 孟顺, 等. 当量比燃烧天然气发动机铑基三效催化器次生污染物研究[J]. 内燃机工程, 2021, 42(6): 70-79. doi: 10.13949/j.cnki.nrjgc.2021.06.010 [9] WANG Y, LI Y, WANG Z, et al. Hydrogen formation from methane rich combustion under high pressure and high temperature conditions[J]. International Journal of Hydrogen Energy, 2017, 42(20): 14301-14311. doi: 10.1016/j.ijhydene.2017.04.022 [10] CANT N W, ANGOVE D E, CHAMBERS D C. Nitrous oxide formation during the reaction of simulated exhaust streams over rhodium, platinum and palladium catalysts[J]. Applied Catalysis B Environmental, 1998, 17(1): 63-73. [11] TOMMASO S, ROBERTO G, D. M A, et al. Measuring emissions from a demonstrator heavy-duty diesel vehicle under Real-World Conditions-Moving Forward to Euro VII[J]. Catalysts, 2022, 12(2): 184-184. doi: 10.3390/catal12020184 [12] RICARDO S, ROBERTO G, TOMMASO S, et al. NH3 and N2O real world emissions measurement from a CNG heavy duty vehicle using on-board measurement systems[J]. Applied Sciences, 2021, 11(21): 10055-10055. doi: 10.3390/app112110055 [13] NEVALAINEN P, KINNUNEN N M, KIRVESLAHTI A, et al. Formation of NH3 and N2O in a modern natural gas three-way catalyst designed for heavy-duty vehicles: The effects of simulated exhaust gas composition and ageing[J]. Applied Catalysis A, General, 2018, 552: 30-37. doi: 10.1016/j.apcata.2017.12.017 [14] 生态环境部. GB 17691-2018重型柴油车污染物排放限值及测量方法(中国第六阶段)[S]. 北京: 中国环境出版社, 2018. [15] ODAKA M, KOIKE N, SUZUKI H. Influence of catalyst deactivation on N2O emissions from automobiles[J]. Chemosphere - Global Change Science, 2000, 2(3): 413-423. [16] ZHANG Q, LI M H, SHAO S D, et al. Ammonia emissions of a natural gas engine at the stoichiometric operation with TWC[J]. Applied Thermal Engineering, 2018, 130: 1363-1372. doi: 10.1016/j.applthermaleng.2017.11.098 [17] QIAN Y, WEI X, SUN Y, et al. Investigation of the formation characteristics of N2O and NH3 for stoichiometric natural gas engines with Pd-only catalyst,[J]. Fuel, 2022, 329: 125223-125233. doi: 10.1016/j.fuel.2022.125223 [18] OH S H, TRIPLETT T. Reaction pathways and mechanism for ammonia formation and removal over palladium-based three-way catalysts: Multiple roles of CO[J]. Catalysis Today, 2014, 231: 22-32. doi: 10.1016/j.cattod.2013.11.048 [19] ADAMS E C, SKOGLUNDH M, ELME T, et al. Water–gas-shift assisted ammonia formation over Pd/Ce/alumina[J]. Catalysis today, 2018, 307: 169-174. doi: 10.1016/j.cattod.2017.05.035 [20] 方晶晶,许林军,鲁毅钧,等. 铈改性Al2O3担载Pd催化剂的CO氧化性能研究[J]. 环境工程学报, 2009, 3(5): 947-950. [21] SAILESH N. BEHERA M S. Investigating the potential role of ammonia in ion chemistry of fine particulate matter formation for an urban environment[J]. Science of The Total Environment, 2010, 408(17): 3569-3575. doi: 10.1016/j.scitotenv.2010.04.017 [22] RENÈME Y, DHAINAUT F, GRANGER P. Kinetics of the NO/H2/O2 reactions on natural gas vehicle catalysts—Influence of Rh addition to Pd[J]. Applied Catalysis B Environmental, 2012, 111: 424-432. [23] BALL D, MOSER D, YANG Y, et al. N2O emissions of low emission vehicles[J]. Sae International Journal of Fuels & Lubricants, 2013, 6(2): 450-456.