β-Mo2C纳米管用于葡萄糖催化氧化及燃料电池的构建

雷杰, 刘书绘, 晋晓勇, 彭娟, 倪刚, 张文涛. β-Mo2C纳米管用于葡萄糖催化氧化及燃料电池的构建[J]. 环境化学, 2019, 38(4): 935-942. doi: 10.7524/j.issn.0254-6108.2018051703
引用本文: 雷杰, 刘书绘, 晋晓勇, 彭娟, 倪刚, 张文涛. β-Mo2C纳米管用于葡萄糖催化氧化及燃料电池的构建[J]. 环境化学, 2019, 38(4): 935-942. doi: 10.7524/j.issn.0254-6108.2018051703
LEI Jie, LIU Shuhui, JIN Xiaoyong, PENG Juan, NI Gang, ZHANG Wentao. Catalytic oxidation of glucose by β-Mo2C nanotubes and the construction of fuel cells[J]. Environmental Chemistry, 2019, 38(4): 935-942. doi: 10.7524/j.issn.0254-6108.2018051703
Citation: LEI Jie, LIU Shuhui, JIN Xiaoyong, PENG Juan, NI Gang, ZHANG Wentao. Catalytic oxidation of glucose by β-Mo2C nanotubes and the construction of fuel cells[J]. Environmental Chemistry, 2019, 38(4): 935-942. doi: 10.7524/j.issn.0254-6108.2018051703

β-Mo2C纳米管用于葡萄糖催化氧化及燃料电池的构建

  • 基金项目:

    国家自然科学基金(21765017),宁夏"化学工程与技术"国内一流学科建设项目(NXYLXK2017A04)和西部一流大学重大创新项目(ZKZD2017003)资助.

Catalytic oxidation of glucose by β-Mo2C nanotubes and the construction of fuel cells

  • Fund Project: Supported by the National Natural Science Foundation of China (21765017),the National First-rate Discipline Construction Project of Ningxia (NXYLXK2017A04) and Western University of Major Innovation Project (ZKZD2017003).
  • 摘要: 采用水热法合成棒状MoO3纳米材料作为合成β-Mo2C纳米管的前驱体,然后通过辅助超声搅拌溶剂热法合成Mo-多巴胺复合物,最后通过程序升温处理得到β-Mo2C纳米管材料.通过X射线衍射(XRD)、透射电子显微镜(TEM)等技术对材料进行表征,并利用循环伏安法(CV)、方波脉冲伏安法(SWV)、线性扫描伏安法(LSV)等电化学方法研究了该材料对葡萄糖的催化氧化性能.实验结果表明,β-Mo2C纳米管修饰电极阻抗小,传导电子的速率快,对葡萄糖的氧化具有很好的催化效果.利用β-Mo2C纳米管构建的葡萄糖/O2燃料电池的开路电位(OCP)为0.47 V,该燃料电池的最大电流密度3.0 mA·cm-2、功率密度0.70 mW·cm-2.
  • 加载中
  • [1] 陈如亮. 新能源电池技术的研究[J]. 科技视界, 2015, 5(27):271-288.

    CHEN R L. Study on new energy battery technology[J]. Science and Technology Vision, 2015, 5(27):271-288(in Chinese).

    [2] NETO S A, FORTI J C, ANDRADE A R D. An overview of enzymatic biofuel cells[J]. Electrocatalysis, 2010, 1(1):87-94.
    [3] 刘强, 许鑫华, 任光雷, 等. 酶生物燃料电池[J]. 化学进展, 2006, 18(11):1530-1537.

    LIU Q, XU X H, REN G L, et al. Enzyme biofuel cell[J]. Progress in Chemistry, 2006, 18 (11):1530-1537(in Chinese).

    [4] CARRETTE L, FRIEDRICH K A, STIMMING U. Fuel cells-fundamentals and applications[J]. Fuelcells, 2001, 1(1):35-39.
    [5] 钟登杰, 刘雅琦, 廖新荣, 等. 金属及其化合物修饰微生物燃料电池阳极的研究进展[J]. 环境化学, 2017, 36(7):1636-1647.

    ZHONG D J, LIU Y Q, LIAO X R, et al. Research progress in anodes modified by metals and metals and metal compounds for microbialfuel cells[J]. Environmental Chemistry, 2017, 36(7):1636-1647(in Chinese).

    [6] 吕娜. 氧化铜基复合纳米材料的制备及其无酶葡萄糖传感性质研究[D]. 长春:东北师范大学, 2016. LU N. Preparation of copper oxide-based composite nanomaterials and its enzyme-free glucose sensing properties[D]. Changchun:Northeast Normal University, 2016(in Chinese).
    [7] PARK S, CHUNG T D, KIM H C. Nonenzymatic glucose detection using mesoporous platinum[J]. Analytical Chemistry, 2003, 75(13):3046-3049.
    [8] BROUZGOU A, TSIAKARAS P. Electrocatalysts for glucose electrooxidation reaction:a review[J]. Topics in Catalysis, 2015, 58(18-20):1311-1327.
    [9] 王蕊. Pt-Pb纳米花修饰无酶葡萄糖传感器的研究[D]. 天津:天津大学, 2010. WANG R. Study on Pt-Pb nanometer flower modified enzyme-free glucose sensor[D]. Tianjin:Tianjin University, 2010(in Chinese).
    [10] XIA Y, HUANG W, ZHENG J, et al. Nonenzymatic amperometric response of glucose on a nanoporous gold film electrode fabricated by a rapid and simple electrochemical method[J]. Biosensors & Bioelectronics, 2011, 26(8):3555-3561.
    [11] PARK S, PARK S, JEONGR A, et al. Nonenzymatic continuous glucose monitoring in human whole blood using electrified nanoporous Pt[J]. Biosensors & Bioelectronics, 2012, 31(1):284-291.
    [12] 王艺兰, 包晓玉, 杨妍, 等. 电沉积纳米NiOx无酶葡萄糖传感器的性能[J]. 分析试验室, 2014, 33(7):799-802.

    WANG Y L, BAO X Y, YANG Y, et al. Performance of a nonenzymatic glucose sensor based on structure of electrodeposited nickel oxide nanostructure[J]. Chinese Journal of Analysis Laboratory, 2014, 33(7):799-802(in Chinese).

    [13] VRUBEL H, HU X. Molybdenum boride and carbide catalyze hydrogen evolution in both acidic and basic solutions[J]. Angewandte Chemie, 2012, 124(51):12875-12878.
    [14] XIAO P, GE X, WANG H, et al. Novel molybdenum carbide-tungsten carbide composite nanowires and their electrochemical activation for efficient and stable hydrogen evolution[J]. Advanced Functional Materials, 2015, 25(10):1520-1526.
    [15] KUDOT, KAWAMURA G, OKAMOTO H. A New (W, Mo) C electrocatalyst synthesized by a carbonyl process:Its activity in relation to H2, HCHO, and CH3OH Electro-Oxidation[J]. Journal of the Electrochemical Society, 1983, 130(7):1491-1497.
    [16] MA F X, WU H B, XIA B Y, et al. Hierarchical β-Mo2C nanotubes organized by ultrathin nanosheets as a highly efficient electrocatalyst for hydrogen production[J]. Angewandte Chemie International Edition, 2015, 54(51):15395-15399.
    [17] CUI W, CHENG N, LIU Q, et al. Mo2C nanoparticles decorated graphitic carbon sheets:Biopolymer-derived solid-state synthesis and application as an efficient electrocatalyst for hydrogen generation[J]. ACS Catalysis, 2014, 4(8):2658-2661.
    [18] LIU Y, WANG M, ZHAO F, et al. The direct electron transfer of glucose oxidase and glucose biosensor based on carbon nanotubes/chitosan matrix[J]. Biosensors and Bioelectronics, 2005, 21(6):984-988.
    [19] GAO Z, LIN Y, HE Y, et al. Enzyme-free amperometric glucose sensor using a glassy carbon electrode modified with poly (vinyl butyral) incorporating a hybrid nanostructure composed of molybdenum disulfide and copper sulfide[J]. Microchimica Acta, 2017, 184(3):807-814.
    [20] KATZ E, LIOUBASHEVSKI O, Willner I. Magnetic field effects on bioelectrocatalytic reactions of surface-confined enzyme systems:Enhanced performance of biofuel cells[J]. Journal of the American Chemical Society, 2005, 127(11):3979-3988.
    [21] 董绍俊. 化学修饰电极[J]. 化学通报, 1981, 28(12):713-721.

    Dong S J. Chemically modified electrode[J]. Chemistry, 1981, 28(12):713-721(in Chinese).

    [22] BASU D, BASU S. Performance studies of Pd-Pt and Pt-Pd-Au catalyst for electro-oxidation of glucose in direct glucose fuel cell[J]. International Journal of Hydrogen Energy, 2012, 37(5):4678-4684.
    [23] ZHAO Y, FAN L, HONG B, et al. Three-dimensional porous palladium foam-like nanostructures as electrocatalysts for glucose biofuel cells[J]. Energy Technology, 2016, 4(2):249-255.
    [24] YANG L, ZHANG Y, CHU M, et al. Facile fabrication of network film electrodes with ultrathin Au nanowires for nonenzymatic glucose sensing and glucose/O2 fuel cell[J]. Biosensors and Bioelectronics, 2014, 52:105-110.
    [25] CUI S, WEN Z, MAO S, et al. One-pot synthesis of high-performance Co/graphene electrocatalysts for glucose fuel cells free of enzymes and precious metals[J]. Chemical Communications, 2015, 51(45):9354-9357.
    [26] KLOKE A, KOHLER C, ZENGERLE R, et al. Porous Platinum electrodes fabricated by cyclic electrodeposition of Pt-Cu alloy:Application to implantable glucose fuel cells[J]. Journal of Physical Chemistry C, 2015, 116(37):19689-19698.
    [27] WEN D, XU, DONG S. A single-walled carbon nanohorns-based miniature glucose/air biofuel cell harvesting energy from soft drinks[J]. Energy & Environmental Science, 2011, 4(4):1358-1363.
    [28] 许凯歌, 张笛, 雷杰, 等. Au Nanowires-MWCNTs修饰电极对葡萄糖的催化氧化[J]. 高等学校化学学报, 2017, 38(10):1864-1871.

    XU K G, ZHANG D, LEI J, et al. Au nanowires-MWCNTs modified electrode for catalyzing the oxidization of glucose[J]. Chemical Journal of Chinese Universities, 2017, 38(10):1864-1871(in Chinese).

    [29] 陆天虹. 能源电化学[M]. 北京:化学工业出版社, 2014. LU T H. Energy Electrochemistry[M]. Beijing:Chemical Industry Press, 2014(in Chinese).
  • 加载中
计量
  • 文章访问数:  778
  • HTML全文浏览数:  769
  • PDF下载数:  86
  • 施引文献:  0
出版历程
  • 收稿日期:  2018-05-17
  • 刊出日期:  2019-04-15
雷杰, 刘书绘, 晋晓勇, 彭娟, 倪刚, 张文涛. β-Mo2C纳米管用于葡萄糖催化氧化及燃料电池的构建[J]. 环境化学, 2019, 38(4): 935-942. doi: 10.7524/j.issn.0254-6108.2018051703
引用本文: 雷杰, 刘书绘, 晋晓勇, 彭娟, 倪刚, 张文涛. β-Mo2C纳米管用于葡萄糖催化氧化及燃料电池的构建[J]. 环境化学, 2019, 38(4): 935-942. doi: 10.7524/j.issn.0254-6108.2018051703
LEI Jie, LIU Shuhui, JIN Xiaoyong, PENG Juan, NI Gang, ZHANG Wentao. Catalytic oxidation of glucose by β-Mo2C nanotubes and the construction of fuel cells[J]. Environmental Chemistry, 2019, 38(4): 935-942. doi: 10.7524/j.issn.0254-6108.2018051703
Citation: LEI Jie, LIU Shuhui, JIN Xiaoyong, PENG Juan, NI Gang, ZHANG Wentao. Catalytic oxidation of glucose by β-Mo2C nanotubes and the construction of fuel cells[J]. Environmental Chemistry, 2019, 38(4): 935-942. doi: 10.7524/j.issn.0254-6108.2018051703

β-Mo2C纳米管用于葡萄糖催化氧化及燃料电池的构建

  • 1.  宁夏大学, 省部共建煤炭高效利用与绿色化工国家重点实验室, 化学国家级实验教学示范中心, 银川, 750021;
  • 2.  南京大学环境学院, 南京, 210023
基金项目:

国家自然科学基金(21765017),宁夏"化学工程与技术"国内一流学科建设项目(NXYLXK2017A04)和西部一流大学重大创新项目(ZKZD2017003)资助.

摘要: 采用水热法合成棒状MoO3纳米材料作为合成β-Mo2C纳米管的前驱体,然后通过辅助超声搅拌溶剂热法合成Mo-多巴胺复合物,最后通过程序升温处理得到β-Mo2C纳米管材料.通过X射线衍射(XRD)、透射电子显微镜(TEM)等技术对材料进行表征,并利用循环伏安法(CV)、方波脉冲伏安法(SWV)、线性扫描伏安法(LSV)等电化学方法研究了该材料对葡萄糖的催化氧化性能.实验结果表明,β-Mo2C纳米管修饰电极阻抗小,传导电子的速率快,对葡萄糖的氧化具有很好的催化效果.利用β-Mo2C纳米管构建的葡萄糖/O2燃料电池的开路电位(OCP)为0.47 V,该燃料电池的最大电流密度3.0 mA·cm-2、功率密度0.70 mW·cm-2.

English Abstract

参考文献 (29)

返回顶部

目录

/

返回文章
返回