[1]
|
GUPTA R C. Handbook of toxicology of chemical warfare agents[M]. London:Academic Press, 2009.
|
[2]
|
PRASAD G K, MAHATO T H, YADAV S S, et al. Sulphur mustard vapor breakthrough behaviour on reactive carbon systems[J]. Journal of Hazardous Materials, 2007, 143(1-2):150-155.
|
[3]
|
SINGER B C, HODGSON A T, DESTAILLATS H, et al. Indoor sorption of surrogates for sarin and related nerve agents[J]. Environmental Science & Technology, 2005, 39(9):3203-3214.
|
[4]
|
HERRMANN H W, SELWYN G S, HENINS I, et al. Chemical warfare agent decontamination studies in the plasma decon chamber[J]. Ieee Transactions on Plasma Science, 2002, 30(4):1460-1470.
|
[5]
|
GOSWAMI S, MILLER C E, LOGSDON J L, et al. Atomistic approach toward selective photocatalytic oxidation of a mustard-gas simulant:A case study with heavy-chalcogen-containing PCN-57 analogues[J]. Acs Applied Materials & Interfaces, 2017, 9(23):19535-19540.
|
[6]
|
UHM H S, SHIN D H, HONG Y C. Plasma flame for mass purification of contaminated air with chemical and biological warfare agents[J]. Applied Physics Letters, 2006, 89(12):2284-2288.
|
[7]
|
SMITH B M. Catalytic methods for the destruction of chemical warfare agents under ambient conditions[J]. Chemical Society Reviews, 2008, 37(3):470-478.
|
[8]
|
KIM K, TSAY O G, ATWOOD D A, et al. Destruction and detection of chemical warfare agents[J]. Chemical Reviews, 2011, 111(9):5345-5403.
|
[9]
|
TEMPLETON M K, WEINBERG W H. Adsorption and decomposition of dimethyl methylphosphonate on an aluminum oxide surface[J]. Journal of the American Chemical Society, 1985, 107(1):97-108.
|
[10]
|
RUSU C N, YATES J T. Adsorption and decomposition of dimethyl methylphosphonate on TiO2[J]. Journal of Physical Chemistry B, 2000, 104(51):12292-12298.
|
[11]
|
PANAYOTOV D A, MORRIS J R. Thermal decomposition of a chemical warfare agent simulant (DMMP) on TiO2:adsorbate reactions with lattice oxygen as studied by infrared spectroscopy[J]. Journal of Physical Chemistry C, 2009, 113(35):15684-15691.
|
[12]
|
LI Y X, KOPER O, ATTEYA M, et al. Adsorption and decomposition of organophosphorus compounds on nanoscale metal-oxide particles-insitu GC-MS studies of pulsed microreactions over magnesium-oxide[J]. Chemistry of Materials, 1992, 4(2):323-330.
|
[13]
|
MITCHELL M B, SHEINKER V N, MINTZ E A. Adsorption and decomposition of dimethyl methylphosphonate on metal oxides[J]. Journal of Physical Chemistry B, 1997, 101(51):11192-11203.
|
[14]
|
CHEN D A, RATLIFF J S, HU X, et al. Dimethyl methylphosphonate decomposition on fully oxidized and partially reduced ceria thin films[J]. Surface Science, 2010, 604(5-6):574-587.
|
[15]
|
SEGAL S R, CAO L, SUIB S L, et al. Thermal decomposition of dimethyl methylphosphonate over manganese oxide catalysts[J]. Journal of Catalysis, 2001, 198(1):66-76.
|
[16]
|
CAO L, SEGAL S R, SUIB S L, et al. Thermocatalytic oxidation of dimethyl methylphosphonate on supported metal oxides[J]. Journal of Catalysis, 2000, 194(1):61-70.
|
[17]
|
TESFAI T M, SHEINKER V N, MITCHELL M B. Decomposition of dimethyl methylphosphonate (DMMP) on alumina-supported iron oxide[J]. Journal of Physical Chemistry B, 1998, 102(38):7299-7302.
|
[18]
|
MOTAMEDHASHEMI M M Y, EGOLFOPOULOS F, TSOTSIS T. Application of a flow-through catalytic membrane reactor (FTCMR) for the destruction of a chemical warfare simulant[J]. Journal of Membrane Science, 2011, 376(1-2):119-131.
|
[19]
|
YOUSEF MOTAMEDHASHEMI M M, MONJI M, EGOLFOPOULOS F, et al. A hybrid catalytic membrane reactor for destruction of a chemical warfare simulant[J]. Journal of Membrane Science, 2015, 473:1-7.
|
[20]
|
MONJI M, CIORA R, LIU P K T, et al. Thermocatalytic decomposition of dimethyl methylphosphonate (DMMP) in a multi-tubular, flow-through catalytic membrane reactor[J]. Journal of Membrane Science, 2015, 482:42-48.
|
[21]
|
YOUSEF MOTAMEDHASHEMI M M, EGOLFOPOULOS F, TSOTSIS T. Flow-through catalytic membrane reactors for the destruction of a chemical warfare simulant:Dynamic performance aspects[J]. Catalysis Today, 2016, 268:130-141.
|
[22]
|
LIM K I, SONG Y I, NAM I-S, et al. Effect of support on the decomposition of DMMP over Pt based catalysts, F, 1996[C]. National Technical Information Service.
|
[23]
|
RYU S G, YANG J K, LEE H W, et al. Decomposition of dimethyl methylphosphonate over alumina-supported precious metal catalysts[J]. Hwahak Konghak, 1995, 33(4):462-470.
|
[24]
|
RATLIFF J S, TENNEY S A, HU X, et al. Decomposition of dimethyl methylphosphonate on Pt, Au, and Au-Pt clusters supported on TiO2(110)[J]. Langmuir, 2009, 25(1):216-225.
|
[25]
|
PANAYOTOV D A, MORRIS J R. Catalytic degradation of a chemical warfare agent simulant:Reaction mechanisms on TiO2-supported Au nanoparticles[J]. Journal of Physical Chemistry C, 2008, 112(19):7496-7502.
|
[26]
|
GRAVEN W M, WELLER S W, PETERS D L. Catalytic conversion of an organophosphate vapor over platinum-alumina[J]. Industrial & Engineering Chemistry Process Design And Development, 1966, 5(2):183-189
|
[27]
|
TZOU T Z, WELLER S W. Catalytic oxidation of dimethyl methylphosphonate[J]. Journal of Catalysis, 1994, 146(2):370-374.
|
[28]
|
HSU C C, DULCEY C S, HORWITZ J S, et al. Mass-spectrometric characterization of performance of a low-temperature oxidation catalyst[J]. Journal of Molecular Catalysis, 1990, 60(3):389-398.
|
[29]
|
CAO L, SUIB S L, TANG X, et al. Thermocatalytic decomposition of dimethyl methylphosphonate on activated carbon[J]. Journal of Catalysis, 2001, 197(2):236-243.
|
[30]
|
TEMPLETON M K, WEINBERG W H. Adsorption and decomposition of dimethyl methylphosphonate on an aluminum-oxide surface[J]. Journal of the American Chemical Society, 1985, 107(1):97-108.
|
[31]
|
SHEINKER V N, MITCHELL M B. Quantitative study of the decomposition of dimethyl methylphosphonate (DMMP) on metal oxides at room temperature and above[J]. Chemistry of Materials, 2002, 14(3):1257-1268.
|
[32]
|
MA S, ZHOU J, KANG Y C, et al. Dimethyl methylphosphonate decomposition on Cu surfaces:Supported Cu nanoclusters and films on TiO2(110)[J]. Langmuir, 2004, 20(22):9686-9694.
|
[33]
|
ZHOU J, MA S, KANG Y C, et al. Dimethyl methylphosphonate decomposition on titania-supported Ni clusters and films:A comparison of chemical activity on different Ni surfaces[J]. Journal of Physical Chemistry B, 2004, 108(31):11633-11644.
|
[34]
|
LEE K Y, HOUALLA M, HERCULES D M, et al. Catalytic oxidative decomposition of dimethyl methylphosphonate over Cu-substituted hydroxyapatite[J]. Journal of Catalysis, 1994, 145(1):223-231.
|
[35]
|
PALUCKA T P, EROR N G, MCNAMARA T A. Oxidative catalytic decomposition of toxic gases using hydroxyapatite and fluorhydroxyapatite[J]. Mrs Proceedings, 1994, 368:275-280.
|
[36]
|
HENDERSON M A, JIN T, WHITE J M. A TPD/AES study of the interaction of dimethyl methylphosphonate with iron oxide (α-Fe2O3) and silicon dioxide[J]. Journal of Physical Chemistry, 1986, 90(19):4607-4611.
|
[37]
|
HENDERSON M A, WHITE J M. Adsorption and decomposition of dimethyl methylphosphonate on platinum(111)[J]. Journal of the American Chemical Society, 1988, 110(21):6939-6947.
|
[38]
|
GUO X, YOSHINOBU J, YATES J T. Decomposition of an organophosphonate compound (dimethylmethylphosphonate) on the nickel(111) and palladium(111) surfaces[J]. Journal of Physical Chemistry, 1990, 94(17):6839-6842.
|
[39]
|
ZHAO H B, TONKYN R G, BARLOW S E, et al. Catalytic oxidation of HCN over a 0.5% Pt/Al2O3 catalyst[J]. Applied Catalysis B-Environmental, 2006, 65(3-4):282-290.
|
[40]
|
KROECHER O, ELSENER M. Hydrolysis and oxidation of gaseous HCN over heterogeneous catalysts[J]. Applied Catalysis B-Environmental, 2009, 92(1-2):75-89.
|
[41]
|
LIU N, YUAN X, CHEN B, et al. Selective catalytic combustion of hydrogen cyanide over metal modified zeolite catalysts:From experiment to theory[J]. Catalysis Today, 2017, 297:201-210.
|
[42]
|
SONG Z, ZHANG Q, NING P, et al. Catalytic hydrolysis of HCN on ZSM-5 modified by Fe or Nb for HCN removal:Surface species and performance[J]. Rsc Advances, 2016, 6(112):111389-111397.
|
[43]
|
HU Y, LIU J, CHENG J, et al. Coupling catalytic hydrolysis and oxidation of HCN over HZSM-5 modified by metal (Fe,Cu) oxides[J]. Applied Surface Science, 2018, 427:843-850.
|
[44]
|
WANG X, JING X, WANG F, et al. Coupling catalytic hydrolysis and oxidation on metal-modified activated carbon for HCN removal[J]. Rsc Advances, 2016, 6(62):7108-7116.
|
[45]
|
WANG L, WANG X, JING X, et al. Efficient removal of HCN through catalytic hydrolysis and oxidation on Cu/CoSPc/Ce metal-modified activated carbon under low oxygen conditions[J]. Rsc Advances, 2016, 6(115):113834-113843.
|
[46]
|
WANG X, CHENG J, WANG X, et al. Mn based catalysts for driving high performance of HCN catalytic oxidation to N2 under micro-oxygen and low temperature conditions[J]. Chemical Engineering Journal, 2018, 333:402-413.
|
[47]
|
LESTER G R, MARINANGELI R E, CRDECCR-87050[R]:US ArmyICRDEC (Aberdeen, MD), 1987.
|
[48]
|
AGARWAL S K, SPIVEY J J, TEVAULT D E. Effect of water-vapor in the catalytic destruction of cyanogen chloride[J]. Journal of the Chemical Society Chemical Communications, 1993, 11:911-912.
|
[49]
|
AGARWAL S K, SPIVEY J J, TEVAULT D E. Kinetics of the catalytic destruction of cyanogen chloride[J]. Applied Catalysis B Environmental, 1995, 5(4):389-403.
|
[50]
|
GLUKHOVTSEV M N, BACH R D, NAGEL C J. A high-level computational study on the thermochemistry and thermal decomposition of sulfur mustard (2,2'-dichloroethyl sulfide):A chemical warfare agent[J]. Journal of Physical Chemistry A, 1998, 102(19):3438-3446.
|
[51]
|
BATTIN-LECLERC F, BARONNET F, PATERNOTTE G, et al. Thermal decomposition of bis (2-chloroethyl) sulphide and bis (2-chloroethyl) ether between 300 and 500 degrees C[J]. Journal of Analytical and Applied Pyrolysis, 2000, 55(2):203-216.
|
[52]
|
JUNG H, LEE H W, JEONG E A. Enhanced thermal degradation of 2,2-dichlorodiethyl sulfide (sulfur mustard, HD) with the presence of metal oxides[J]. Phosphorus Sulfur and Silicon and the Related Elements, 2016, 191(8):1137-1141.
|
[53]
|
KLINGHOFFER A A, ROSSIN J A, ERDEC-CR-105[R]:US ArmyICRDEC (Aberdeen, MD), 1994.
|
[54]
|
ROSSIN J A, ERDEC-CR-047[R]:U. S. Army Chemical and Biological Defense Command, 1993.
|
[55]
|
KLINGHOFFER A A, ROSSIN J A, ERDEC-CR-209[R]:US ArmyICRDEC (Aberdeen, MD), 1995.
|