芬顿及光芬顿法降解氟喹诺酮类抗生素研究进展
Recent development in the degradation of fluoroquinolones by Fenton and photo-Fenton processes
-
摘要: 氟喹诺酮类抗生素的广泛使用导致其在环境中被广泛检出。现有的污水处理工艺无法有效去除废水中的氟喹诺酮类抗生素,而高效的降解方法对于控制氟喹诺酮类抗生素的污染至关重要。芬顿法能够降解大多数难处理有机污染物,同时具有适用范围广、抗干扰能力强、操作简单和污染物降解迅速等优点。本文综述了芬顿和光芬顿反应降解氟喹诺酮类抗生素的最新进展、相关的反应机理和主要工艺条件(如pH值、芬顿试剂剂量和光源等)对降解效率的影响,以及典型氟喹诺酮类抗生素的芬顿及光芬顿降解的产物与降解路径。随着对环境中抗生素污染危害的认识,未来有必要加强对芬顿及光芬顿这类高效、低成本处理技术的研究,为氟喹诺酮类及其它类型抗生素的危害消减提供理论依据与技术支持。Abstract: Fluoroquinolones have been widely detected in the environment due to their widespread use. Existing technologies employed in wastewater treatment facilities cannot effectively remove fluoroquinolones, while highly efficient removal methods are important for controlling their pollution. Fenton process can effectively degrade most refractory organic pollutants and has the advantages of wide applicability, robust performance, simple operation, and rapid degradation of organic pollutants. This review summarizes the recent development in the degradation of fluoroquinolones by Fenton and photo-Fenton processes, the relevant reaction mechanism, and the effect of major operating parameters (including solution pH, dosage of Fenton’s reagent, and light source) on the treatment performance, as well as the degradation products and pathways of representative fluoroquinolones by Fenton and photo-Fenton processes. With the improved understanding on the environmental risk of antibiotic pollution, it is necessary to strengthen the research on efficient and low-cost treatment technologies, such as Fenton and photo-Fenton processes, to provide theoretical basis and technological support for eliminating the risk of fluoroquinolones and other types of antibiotics.
-
表 1 氟喹诺酮类抗生素的芬顿和光芬顿氧化
Table 1. Fenton and photo-Fenton oxidation of fluoroquinolones
氧化方式
Oxidation method目标物
Target pollutant初始浓度
Initial concentration最佳操作条件
Optimum operating conditions降解效率
Degradation efficiency参考文献
Reference芬顿氧化 环丙沙星 15 mg·L−1 [Fe2+]/[H2O2] = 0.125; pH = 3.5 74.4% [77] 诺氟沙星 15 mg·L−1 [Fe2+] = 0.8 mmol·L−1; [H2O2] =
5.64 mmol·L−1; pH = 3.060% [83] 氧氟沙星 24.93 mmol·L−1 [Fe2+] = 0.03 mmol·L−1; [H2O2] =
15.0 mmol·L−1; pH = 4.093.1% [84] 环丙沙星 100 mg·L−1 [H2O2]/[Fe2+] = 10; pH = 3.0 70% [85] 光芬顿氧化 氧氟沙星 100 μg·L−1 [Fe2+] = 5 mg·L−1; [H2O2] = 75 mg·L−1;
pH = 2.8—2.978.6% [51] 环丙沙星 0.15 mmol·L−1 [Fe2+] = 0.5 mmol·L−1; [H2O2] =
10 mmol·L−1; pH = 3.0100% [86] 恩诺沙星 0.15 mmol·L−1 [Fe2+] = 0.5 mmol·L−1; [H2O2] =
10 mmol·L−1; pH = 3.0100% [86] 环丙沙星 15 mg·L−1 [H2O2] = 5.0 mmol·L−1; [Fe2+] =
0.05 mmol·L−1; pH = 4.0100% [87] 表 2 部分FQs与·OH反应的二阶速率常数与相应的QSAR模型基础数据[124]
Table 2. The second-order rate constants of the reactions between selected FQs and ·OH and their property data for the corresponding QSAR model[124]
目标物
Target pollutant二阶速率常数/(L·mol−1·s−1)
Second-order rate
constantCH2RX片段数量(C-006)
Number of CH2RX fragment碳原子上的正原子静电荷(qc+)
Most positive net atomic
charge on C atom分子偶极矩(μ)
Molecular dipole moment环丙沙星 (3.32 ± 0.40) × 1010 4.0 1.049 58.89 诺氟沙星 (3.63 ± 0.44) × 1010 5.0 1.268 59.01 氧氟沙星 (1.57 ± 0.26) × 1010 5.0 0.8547 57.77 恩诺沙星 (4.16 ± 0.22) × 1010 5.0 1.040 59.97 -
[1] KUMAR A, KHAN M, ZENG X, et al. Development of g-C3N4/TiO2/Fe3O4@SiO2 heterojunction via sol-gel route: A magnetically recyclable direct contact Z-scheme nanophotocatalyst for enhanced photocatalytic removal of ibuprofen from real sewage effluent under visible light [J]. Chemical Engineering Journal, 2018, 353: 645-656. doi: 10.1016/j.cej.2018.07.153 [2] NARVÁEZ J A L, MAHECHA P V. Exploring the potential of using the residues of lulo (Solanum quitoense) for the production of biopolymers [J]. Acta Agronomica, 2012, 61(1): 93-94. [3] KÜMMERER K. Antibiotics in the aquatic environment – A review – Part I [J]. Chemosphere, 2009, 75(4): 417-434. doi: 10.1016/j.chemosphere.2008.11.086 [4] 张君, 封丽, 田隽, 等. 氟喹诺酮类在环境中的分布及去除研究进展 [J]. 环境科学与技术, 2019, 42(S1): 77-84. ZHANG J, FENG L, TIAN J, et al. Research progress on the distribution and removal of fluoroquinolones in the environment [J]. Environmental Science And Technology, 2019, 42(S1): 77-84(in Chinese).
[5] ČVANČAROVÁ M, MOEDER M, FILIPOVÁ A, et al. Biotransformation of fluoroquinolone antibiotics by ligninolytic fungi – Metabolites, enzymes and residual antibacterial activity [J]. Chemosphere, 2015, 136: 311-320. doi: 10.1016/j.chemosphere.2014.12.012 [6] GOLET E M, XIFRA I, SIEGRIST H, et al. Environmental exposure assessment of fluoroquinolone antibacterial agents from sewage to soil [J]. Environmental Science and Technology, 2003, 37(15): 3243-3249. doi: 10.1021/es0264448 [7] WANG P, HE Y L, HUANG CH. Oxidation of fluoroquinolone antibiotics and structurally related amines by chlorine dioxide: Reaction kinetics, product and pathway evaluation [J]. Water Research, 2010, 44(20): 5989-5998. doi: 10.1016/j.watres.2010.07.053 [8] XU W, ZHANG G, LI X, et al. Occurrence and elimination of antibiotics at four sewage treatment plants in the Pearl River Delta (PRD), South China [J]. Water Research, 2007, 41(19): 4526-4534. doi: 10.1016/j.watres.2007.06.023 [9] GÖBEL A, THOMSEN A, MCARDELL C S, et al. Extraction and determination of sulfonamides, macrolides, and trimethoprim in sewage sludge [J]. Journal of Chromatography A, 2005, 1085(2): 179-189. doi: 10.1016/j.chroma.2005.05.051 [10] MCARDELL C, MOLNAR E, SUTER M, et al. Occurrence and fate of macrolide antibiotics in wastewater treatment plants and in the Glatt Valley Watershed, Switzerland [J]. Environmental Science & Technology, 2003, 37: 5479-86. [11] GOLET E M, ALDER A C, GIGER W. Environmental exposure and risk assessment of fluoroquinolone antibacterial agents in wastewater and river water of the glatt valley watershed, Switzerland [J]. Environmental Science & Technology, 2002, 36(17): 3645-3651. [12] HUBER M M, GÖBEL A, JOSS A, et al. Oxidation of pharmaceuticals during ozonation of municipal wastewater effluents: A pilot study [J]. Environmental Science & Technology, 2005, 39(11): 4290-4299. [13] SIRÉS I, BRILLAS E. Remediation of water pollution caused by pharmaceutical residues based on electrochemical separation and degradation technologies: A review [J]. Environment International, 2012, 40(1): 212-229. [14] SPELTINI A, STURINI M, MARASCHI F, et al. Fluoroquinolone antibiotics in environmental waters: Sample preparation and determination [J]. Journal of Separation Science, 2010, 33(8): 1115-1131. [15] LILLENBERG M, YURCHENKO S, KIPPER K, et al. Simultaneous determination of fluoroquinolones, sulfonamides and tetracyclines in sewage sludge by pressurized liquid extraction and liquid chromatography electrospray ionization-mass spectrometry [J]. Journal of Chromatography A, 2009, 1216(32): 5949-5954. doi: 10.1016/j.chroma.2009.06.029 [16] LI B, ZHANG T. Biodegradation and adsorption of antibiotics in the activated sludge process [J]. Environmental Science & Technology, 2010, 44(9): 3468-3473. [17] JIA A, WAN Y, XIAO Y, et al. Occurrence and fate of quinolone and fluoroquinolone antibiotics in a municipal sewage treatment plant [J]. Water Research, 2012, 46(2): 387-394. doi: 10.1016/j.watres.2011.10.055 [18] SPELTINI A, STURINI M, MARASCHI F, et al. Analytical methods for the determination of fluoroquinolones in solid environmental matrices [J]. TrAC Trends in Analytical Chemistry, 2011, 30(8): 1337-1350. doi: 10.1016/j.trac.2011.04.011 [19] GU C, KARTHIKEYAN K G. Sorption of the antimicrobial ciprofloxacin to aluminum and iron hydrous oxides [J]. Environmental Science & Technology, 2005, 39(23): 9166-9173. [20] LI H, ZHANG D, HAN X, et al. Adsorption of antibiotic ciprofloxacin on carbon nanotubes: pH dependence and thermodynamics [J]. Chemosphere, 2014, 95: 150-155. doi: 10.1016/j.chemosphere.2013.08.053 [21] HU L, MARTIN H M, STRATHMANN T J. Oxidation kinetics of antibiotics during water treatment with potassium permanganate [J]. Environmental Science & Technology, 2010, 44(16): 6416-6422. [22] YANG Y, OK Y S, KIM K H, et al. Occurrences and removal of pharmaceuticals and personal care products (PPCPs) in drinking water and water/sewage treatment plants: A review [J]. Science of the Total Environment, 2017, 596-597: 303-320. doi: 10.1016/j.scitotenv.2017.04.102 [23] KIM H, HWANG Y S, SHARMA V K. Adsorption of antibiotics and iopromide onto single-walled and multi-walled carbon nanotubes [J]. Chemical Engineering Journal, 2014, 255: 23-27. doi: 10.1016/j.cej.2014.06.035 [24] ÖTKER H M, AKMEHMET B I. Adsorption and degradation of enrofloxacin, a veterinary antibiotic on natural zeolite [J]. Journal of Hazardous Materials, 2005, 122(3): 251-258. doi: 10.1016/j.jhazmat.2005.03.005 [25] VAN W E M, SEYMOUR M D, PETERSON J W. Interaction of the fluoroquinolone antibiotic, ofloxacin, with titanium oxide nanoparticles in water: Adsorption and breakdown [J]. Science of the Total Environment, 2012, 441: 1-9. doi: 10.1016/j.scitotenv.2012.09.067 [26] JIANG C, ZHANG X, XU X, et al. Magnetic mesoporous carbon material with strong ciprofloxacin adsorption removal property fabricated through the calcination of mixed valence Fe based metal-organic framework [J]. Journal of Porous Materials, 2016, 23(5): 1297-1304. doi: 10.1007/s10934-016-0188-x [27] MICHAEL I, RIZZO L, MCARDELL C S, et al. Urban wastewater treatment plants as hotspots for the release of antibiotics in the environment: A review [J]. Water Research, 2013, 47(3): 957-995. doi: 10.1016/j.watres.2012.11.027 [28] KLAVARIOTI M, MANTZAVINOS D, KASSINOS D. Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes [J]. Environment International, 2009, 35(2): 402-417. doi: 10.1016/j.envint.2008.07.009 [29] MALATO S, MALDONADO M I, BLANCO J, et al. Decontamination and disinfection of water by solar photocatalysis: recent overview and trends [J]. Catalysis Today, 2009, 147(1): 1-59. doi: 10.1016/j.cattod.2009.06.018 [30] FENG M, WANG Z Y, DIONYSIOU D D, et al. Metal-mediated oxidation of fluoroquinolone antibiotics in water: A review on kinetics, transformation products, and toxicity assessment [J]. Journal of Hazardous Materials, 2018, 344: 1136-1154. doi: 10.1016/j.jhazmat.2017.08.067 [31] LITTER M I. Introduction to photochemical advanced oxidation processes for water treatment [J]. Environmental Photochemistry Part II, 2005, 2: 325-366. [32] ANDREOZZI R, CAPRIO V, INSOLA A, et al. Advanced oxidation processes (AOP) for water purification and recovery [J]. Catalysis Today, 1999, 53(1): 51-59. doi: 10.1016/S0920-5861(99)00102-9 [33] DUESTERBERG C K, WAITE T D. Process optimization of Fenton oxidation using kinetic modeling [J]. Environmental Science & Technology, 2006, 40(13): 4189-4195. [34] CHENG M, ZENG G M, HUANG D L, et al. Hydroxyl radicals based advanced oxidation processes (AOPs) for remediation of soils contaminated with organic compounds: A review [J]. Chemical Engineering Journal, 2016, 284: 582-598. doi: 10.1016/j.cej.2015.09.001 [35] BOKARE A D, CHOI W. Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes [J]. Journal of Hazardous Materials, 2014, 275: 121-135. doi: 10.1016/j.jhazmat.2014.04.054 [36] SHARMA A, AHMAD J, FLORA S J S. Application of advanced oxidation processes and toxicity assessment of transformation products [J]. Environmental Research, 2018, 167: 223-233. doi: 10.1016/j.envres.2018.07.010 [37] ADAMS C, WANG Y, LOFTIN K, et al. Removal of antibiotics from sur face and distilled water in conventional water treatment processes [J]. Journal of Environmental Engineering, 2002, 128(3): 253-260. doi: 10.1061/(ASCE)0733-9372(2002)128:3(253) [38] ARSLAN A I, DOGRUEL S. Pre-treatment of penicillin formulation effluent by advanced oxidation processes [J]. Journal of Hazardous Materials, 2004, 112(1): 105-113. [39] ELMOLLA E S, CHAUDHURI M. The feasibility of using combined TiO2 photocatalysis-SBR process for antibiotic wastewater treatment [J]. Desalination, 2011, 272(1): 218-224. [40] AN T, YANG H, LI G, et al. Kinetics and mechanism of advanced oxidation processes (AOPs) in degradation of ciprofloxacin in water [J]. Applied Catalysis B: Environmental, 2010, 94(3): 288-294. [41] AN T, YANG H, SONG W, et al. Mechanistic considerations for the advanced oxidation treatment of fluoroquinolone pharmaceutical compounds using TiO2 heterogeneous catalysis [J]. Journal of Physical Chemistry A, 2010, 114(7): 2569-2575. doi: 10.1021/jp911349y [42] PAUL T, MILLER P L, STRATHMANN T J. Visible-light-mediated TiO2 photocatalysis of fluoroquinolone antibacterial agents [J]. Environmental Science & Technology, 2007, 41(13): 4720-4727. [43] DEWITTE B, DEWULF J, DEMEESTERE K, et al. Ozonation of ciprofloxaci n in water: HRMS identification of reaction products and pathways [J]. Environmental Science & Technology, 2008, 42(13): 4889-4895. [44] LIU C, NANABOINA V, KORSHIN G V, et al. Spectroscopic study of degradation products of ciprofloxacin, norfloxacin and lomefloxacin formed in ozonated wastewater [J]. Water Research, 2012, 46(16): 5235-5246. doi: 10.1016/j.watres.2012.07.005 [45] CARBAJO J B, PETRE A L, ROSAL R., et al Continuous ozonation treatment of ofloxacin: Transformation products, water matrix effect and aquatic toxicity [J]. Journal of Hazardous Materials, 2015, 292: 34-43. doi: 10.1016/j.jhazmat.2015.02.075 [46] XU Y, LIU S, GUO F, et al. Evaluation of the oxidation of enrofloxacin by permanganate and the antimicrobial activity of the products [J]. Chemosphere, 2016, 144: 113-121. doi: 10.1016/j.chemosphere.2015.07.083 [47] KULKARNI R M, HANAGADAKAR M S, MALLADI R S, et al. Experimental and theoretical studies on the oxidation of lomefloxacin by alkaline permanganate [J]. Desalination and Water Treatment, 2016, 57(23): 10826-10838. doi: 10.1080/19443994.2015.1037797 [48] JIANG J Q, ZHOU Z, PAHL O. Preliminary study of ciprofloxacin (cip) removal by potassium ferrate(Ⅵ) [J]. Separation and Purification Technology, 2012, 88: 95-98. doi: 10.1016/j.seppur.2011.12.021 [49] ZHOU Z, JIANG J Q. Reaction kinetics and oxidation products formation in the degradation of ciprofloxacin and ibuprofen by ferrate(VI) [J]. Chemosphere, 2015, 119: S95-S100. doi: 10.1016/j.chemosphere.2014.04.006 [50] BARIŞÇI S, ULU F, SILLANPÄÄ M. et al The usage of different forms of ferrate (Ⅵ) ion for amoxicillin and ciprofloxacin removal: density functional theory based modelling of redox decomposition [J]. Journal of Chemical Technology & Biotechnology, 2016, 91(1): 257-266. [51] MICHAEL I, HAPESHI E, MICHAEL C, et al. Solar photo-Fenton process on the abatement of antibiotics at a pilot scale: Degradation kinetics, ecotoxicity and phytotoxicity assessment and removal of antibiotic resistant enterococci [J]. Water Research, 2012, 46(17): 5621-5634. doi: 10.1016/j.watres.2012.07.049 [52] ÖZCAN A, ATILIR ÖZCAN A, DEMIRCI Y. Evaluation of mineralization kinetics and pathway of norfloxacin removal from water by electro-Fenton treatment [J]. Chemical Engineering Journal, 2016, 304: 518-526. doi: 10.1016/j.cej.2016.06.105 [53] WANG N, ZHENG T, ZHANG G S, et al. A review on Fenton-like processes for organic wastewater treatment [J]. Journal of Environmental Chemical Engineering, 2016, 4(1): 762-787. doi: 10.1016/j.jece.2015.12.016 [54] CHEN L, MA J, LI X C, et al. Strong enhancement on Fenton oxidation by addition of hydroxylamine to accelerate the ferric and ferrous iron cycles [J]. Environmental Science & Technology, 2011, 45(9): 3925-3930. [55] FENTON H J H, LXXIII. Oxidation of tartaric acid in presence of iron [J]. Journal of the Chemical Society, Transactions, 1894, 65(0): 899-910. doi: 10.1039/CT8946500899 [56] TEKIN H, BILKAY O, ATABERK S, et al. Use of Fenton oxidation to improve the biodegradability of a pharmaceutical wastewater [J]. Journal of Hazardous Materials, 2006, 136: 258-65. doi: 10.1016/j.jhazmat.2005.12.012 [57] 何东芹, Fenton类高级氧化反应在污泥脱水和污染物降解中的作用机制[D]. 合肥: 中国科学技术大学, 2017. HE D Q. The mechanism of Fenton-like advanced oxidation reactions in sludge dewatering and pollutant degradation [D]. Hefei: University of Science and Technology of China, 2017.
[58] DUESTERBERG C K, MYLON S E, WAITE T D. pH effects on iron-catalyzed oxidation using Fenton’s reagent [J]. Environmental Science & Technology, 2008, 42(22): 8522-8527. [59] BABUPONNUSAMI A, MUTHUKUMAR K. A review on Fenton and improvements to the Fenton process for wastewater treatment [J]. Journal of Environmental Chemical Engineering, 2014, 2(1): 557-572. doi: 10.1016/j.jece.2013.10.011 [60] ONG W, CHENG M, MA J, et al. Decomposition of hydrogen peroxide driven by photochemical cycling of iron species in clay [J]. Environmental Science & Technology, 2006, 40(15): 4782-4787. [61] NIE Y, HU C, QU J, et al. Efficient photodegradation of Acid Red B by immobilized ferrocene in the presence of UVA and H2O2 [J]. Journal of Hazardous Materials, 2008, 154(1): 146-152. [62] WANG J, WANG S. Removal of pharmaceuticals and personal care products (PPCPs) from wastewater: A review [J]. Journal of Environmental Management, 2016, 182: 620-640. doi: 10.1016/j.jenvman.2016.07.049 [63] MACHULEK A, MORAES J E F. VAUTIER-GIONGO C., et al Abatement of the inhibitory effect of chloride anions on the photo-Fenton process [J]. Environmental Science & Technology, 2007, 41(24): 8459-8463. [64] AVETTA P, PENSATO A, MINELLA M, et al. Activation of persulfate by irradiated magnetite: Implications for the degradation of phenol under heterogeneous photo-Fenton-like conditions [J]. Environmental Science & Technology, 2015, 49(2): 1043-1050. [65] CLARIZIA L, RUSSO D, DI SOMMA I, et al. Homogeneous photo-Fenton processes at near neutral pH: A review [J]. Applied Catalysis B: Environmental, 2017, 209: 358-371. doi: 10.1016/j.apcatb.2017.03.011 [66] MAEZONO T, TOKUMURA M, SEKINE M, et al. Hydroxyl radical concentration profile in photo-Fenton oxidation process: Generation and consumption of hydroxyl radicals during the discoloration of azo-dye Orange II [J]. Chemosphere, 2011, 82(10): 1422-1430. doi: 10.1016/j.chemosphere.2010.11.052 [67] IGNATELLO J J, OLIVEROS E, MACKAY A. Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry [J]. Critical Reviews in Environmental Science and Technology, 2006, 36(1): 1-84. doi: 10.1080/10643380500326564 [68] RAHIM P S, ABDUL A A R, WAN D W M A. Review on the main advances in photo-Fenton oxidation system for recalcitrant wastewaters [J]. Journal of Industrial and Engineering Chemistry, 2015, 21: 53-69. doi: 10.1016/j.jiec.2014.05.005 [69] LIU R, XU Y, CHEN B. Self-assembled nano-FeO(OH)/reduced graphene oxide aerogel as a reusable catalyst for photo-Fenton degradation of phenolic organics [J]. Environmental Science & Technology, 2018, 52(12): 7043-7053. [70] BRILLAS E, SIRÉS I, OTURAN M A. Electro-Fenton process and related electrochemical technologies based on Fenton’s reaction chemistry [J]. Chemical Reviews, 2009, 109(12): 6570-6631. doi: 10.1021/cr900136g [71] JO W K, TAYADE R J. New generation energy-efficient light source for photocatalysis: LEDs for environmental applications [J]. Industrial & Engineering Chemistry Research, 2014, 53(6): 2073-2084. [72] LIU J, WU J Y, KANG C L, et al. Photo-Fenton effect of 4-chlorophenol in ice [J]. Journal of Hazardous Materials, 2013, 261: 500-511. doi: 10.1016/j.jhazmat.2013.07.040 [73] PLIEGO G, XEKOUKOULOTAKIS N, VENIERI D, et al. Complete degradation of the persistent anti-depressant sertraline in aqueous solution by solar photo-Fenton oxidation [J]. Journal of Chemical Technology & Biotechnology, 2014, 89(6): 814-818. [74] PLIEGO G, ZAZO J A, GARCIA M P, et al. Trends in the intensification of the Fenton process for wastewater treatment: an overview [J]. Critical Reviews in Environmental Science and Technology, 2015, 45(24): 2611-2692. doi: 10.1080/10643389.2015.1025646 [75] BARHOUMI N, LABIADH L, OTURAN M A, et al. Electrochemical mineralization of the antibiotic levofloxacin by electro-Fenton-pyrite process [J]. Chemosphere, 2015, 141: 250-257. doi: 10.1016/j.chemosphere.2015.08.003 [76] YAHYA M S, OTURAN N, EL K K, et al. Oxidative degradation study on antimicrobial agent ciprofloxacin by electro-fenton process: Kinetics and oxidation products [J]. Chemosphere, 2014, 117: 447-454. doi: 10.1016/j.chemosphere.2014.08.016 [77] GIRI A S, GOLDER A K. Ciprofloxacin degradation from aqueous solution by Fenton oxidation: Reaction kinetics and degradation mechanisms [J]. RSC Advances, 2014, 4(13): 6738-6745. doi: 10.1039/c3ra45709e [78] XIAO X, ZENG X, LEMLEY A T. Species-dependent degradation of ciprofloxacin in a membrane anodic Fenton system [J]. Journal of Agricultural and Food Chemistry, 2010, 58(18): 10169-10175. doi: 10.1021/jf101943c [79] GONG Y, LI J, ZHANG Y, et al. Partial degradation of levofloxacin for biodegradability improvement by electro-Fenton process using an activated carbon fiber felt cathode [J]. Journal of Hazardous Materials, 2016, 304: 320-328. doi: 10.1016/j.jhazmat.2015.10.064 [80] YAHYA M S, EL KARBANE M, OTURAN N, et al. Mineralization of the antibiotic levofloxacin in aqueous medium by electro-Fenton process: kinetics and intermediate products analysis [J]. Environmental Technology, 2016, 37(10): 1276-1287. doi: 10.1080/09593330.2015.1111427 [81] ANNABI C, FOURCADE F, SOUTREL I, et al. Degradation of enoxacin antibiotic by the electro-Fenton process: Optimization, biodegradability improvement and degradation mechanism [J]. Journal of Environmental Management, 2016, 165: 96-105. doi: 10.1016/j.jenvman.2015.09.018 [82] GARCIA S S, GARRIDO J A, RODRÍGUEZ R M, et al. Mineralization of flumequine in acidic medium by electro-Fenton and photoelectro-Fenton processes [J]. Water Research, 2012, 46(7): 2067-2076. doi: 10.1016/j.watres.2012.01.019 [83] SANTOS L V D S, MEIRELES A M, LANGE L C. Degradation of antibiotics norfloxacin by Fenton, UV and UV/H2O2 [J]. Journal of Environmental Management, 2015, 154: 8-12. [84] PI Y, FENG J, SONG M, et al. Degradation potential of ofloxacin and its resulting transformation products during Fenton oxidation process [J]. Chinese Science Bulletin, 2014, 59(21): 2618-2624. doi: 10.1007/s11434-014-0293-7 [85] GUPTA A, GARG A. Degradation of ciprofloxacin using Fenton's oxidation: Effect of operating parameters, identification of oxidized by-products and toxicity assessment [J]. Chemosphere, 2018, 193: 1181-1188. doi: 10.1016/j.chemosphere.2017.11.046 [86] BOBU M, YEDILER A, SIMINICEANU I, et al. Comparison of different advanced oxidation processes for the degradation of two fluoroquinolone antibiotics in aqueous solutions [J]. Journal of Environmental Science and Health, Part A, 2013, 48(3): 251-262. doi: 10.1080/10934529.2013.726805 [87] SUN S P, GUO H Q, KE Q, et al. Degradation of antibiotic ciprofloxacin hydrochloride by photo-Fenton oxidation process [J]. Environmental Engineering Science, 2009, 26(4): 753-759. doi: 10.1089/ees.2008.0076 [88] 吴健, 熊振湖. UV/Fenton法对诺氟沙星的降解与矿化 [J]. 天津城市建设学院学报, 2008, 14(4): 259-262. WU J, XIONG Z H. Degradation and mineralization of norfloxacin by UV/Fenton method [J]. Journal of Tianjin Institute of Urban Construction, 2008, 14(4): 259-262(in Chinese).
[89] WANG C, YU G, CHEN H, et al. Degradation of norfloxacin by hydroxylamine enhanced fenton system: Kinetics, mechanism and degradation pathway [J]. Chemosphere, 2021, 270: 129408. doi: 10.1016/j.chemosphere.2020.129408 [90] GIRI A S, GOLDER A K. Ciprofloxacin degradation in photo-Fenton and photo-catalytic processes: Degradation mechanisms and iron chelation [J]. Journal of Environmental Sciences, 2019, 80: 82-92. doi: 10.1016/j.jes.2018.09.016 [91] NOGUEIRA A A, SOUZA B M, DEZOTTI M W C, et al. Ferrioxalate complexes as strategy to drive a photo-Fenton reaction at mild pH conditions: A case study on levofloxacin oxidation [J]. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 345: 109-123. doi: 10.1016/j.jphotochem.2017.05.020 [92] PERINI J A L, TONETTI A L, VIDAL C, et al. Simultaneous degradation of ciprofloxacin, amoxicillin, sulfathiazole and sulfamethazine, and disinfection of hospital effluent after biological treatment via photo-Fenton process under ultraviolet germicidal irradiation [J]. Applied Catalysis B: Environmental, 2018, 224: 761-771. doi: 10.1016/j.apcatb.2017.11.021 [93] SEIBERT D, DIEL T, WELTER J B, et al. Performance of photo-Fenton process mediated by Fe (III)-carboxylate complexes applied to degradation of landfill leachate [J]. Journal of Environmental Chemical Engineering, 2017, 5(5): 4462-4470. doi: 10.1016/j.jece.2017.08.043 [94] MIRALLES CUEVAS S, AUDINO F, OLLER I, et al. Pharmaceuticals removal from natural water by nanofiltration combined with advanced tertiary treatments (solar photo-Fenton, photo-Fenton-like Fe(III)–EDDS complex and ozonation) [J]. Separation and Purification Technology, 2014, 122: 515-522. doi: 10.1016/j.seppur.2013.12.006 [95] LIU X, ZHOU Y, ZHANG J, et al. Insight into electro-Fenton and photo-Fenton for the degradation of antibiotics: Mechanism study and research gaps [J]. Chemical Engineering Journal, 2018, 347: 379-397. doi: 10.1016/j.cej.2018.04.142 [96] SHARMILA V G, KUMAR S A, BANU J R, et al. Feasibility analysis of homogenizer coupled solar photo Fenton process for waste activated sludge reduction [J]. Journal of Environmental Management, 2019, 238: 251-256. [97] HUANG A, ZHI D, TANG H, et al. Effect of Fe2+, Mn2+ catalysts on the performance of electro-Fenton degradation of antibiotic ciprofloxacin, and expanding the utilizing of acid mine drainage [J]. Science of the Total Environment, 2020, 720: 137560. doi: 10.1016/j.scitotenv.2020.137560 [98] CHEN Y, WANG A, ZHANG Y, et al. Electro-Fenton degradation of antibiotic ciprofloxacin (CIP): Formation of Fe3+-CIP chelate and its effect on catalytic behavior of Fe2+/Fe3+ and CIP mineralization [J]. Electrochimica Acta, 2017, 256: 185-195. doi: 10.1016/j.electacta.2017.09.173 [99] SUN J H, SUN S P, FAN M H, et al. Oxidative decomposition of p-nitroaniline in water by solar photo-Fenton advanced oxidation process [J]. Journal of Hazardous Materials, 2008, 153(1): 187-193. [100] FAUST B, HOIGNÉ J. Photolysis of Fe(Ⅲ)-hydroxy complexes as sources of OH radicals in clouds, fog and rain [J]. Atmospheric Environment. Part A. General Topics, 1990, 24: 79-89. doi: 10.1016/0960-1686(90)90443-Q [101] KIM Y K, HUH I R. Enhancing biological treatability of landfill leachate by chemical oxidation [J]. Environmental Engineering Science, 1997, 14: 73-79. doi: 10.1089/ees.1997.14.73 [102] KIM S M, VOGELPOHL A. Degradation of organic pollutants by the photo-Fenton-process [J]. Chemical Engineering & Technology, 1998, 21(2): 187-191. [103] KAVITHA V, PALANIVELU K. Destruction of cresols by Fenton oxidation process [J]. Water Research, 2005, 39(13): 3062-3072. doi: 10.1016/j.watres.2005.05.011 [104] HASSAN A K, RAHMAN M M, CHATTOPADHAY G, et al. Kinetic of the degradation of sulfanilic acid azochromotrop (SPADNS) by Fenton process coupled with ultrasonic irradiation or L-cysteine acceleration [J]. Environmental Technology & Innovation, 2019, 15: 100380. [105] PIGNATELLO J J. Dark and photoassisted iron(3+)-catalyzed degradation of chlorophenoxy herbicides by hydrogen peroxide [J]. Environmental Science & Technology, 1992, 26(5): 944-951. [106] FAN X, HAO H, WANG Y, et al. Fenton-like degradation of nalidixic acid with Fe3+/H2O2 [J]. Environmental Science and Pollution Research, 2013, 20(6): 3649-3656. doi: 10.1007/s11356-012-1279-0 [107] GUEDES A M F M, MADEIRA L M P, BOAVENTURA R A R, et al. Fenton oxidation of cork cooking wastewater—overall kinetic analysis [J]. Water Research, 2003, 37(13): 3061-3069. doi: 10.1016/S0043-1354(03)00178-7 [108] AMIMI M, QOURZAL S, BARKA N, et al. Methomyl degradation in aqueous solutions by Fenton's reagent and the photo-Fenton system [J]. Separation and Purification Technology, 2008, 61(1): 103-108. doi: 10.1016/j.seppur.2007.09.017 [109] BOSSMANN S, OLIVEROS E, GÖB S, et al. New evidence against hydroxyl radicals as reactive intermediates in the thermal and photochemically enhanced fenton reactions [J]. Journal of Physical Chemistry A, 1998, 102: 5542-5550. [110] WANG Q, TIAN S, NING. Degradation mechanism of methylene blue in a heterogeneous Fenton-like reaction catalyzed by ferrocene [J]. Industrial & Engineering Chemistry Research, 2014, 53(2): 643-649. [111] GOGATE P R, PANDIT A B. A review of imperative technologies for wastewater treatment I: Oxidation technologies at ambient conditions [J]. Advances in Environmental Research, 2004, 8(3): 501-551. [112] PANIZZA M, CERISOLA G. Electro-Fenton degradation of synthetic dyes [J]. Water Research, 2009, 43(2): 339-344. doi: 10.1016/j.watres.2008.10.028 [113] KIM J S, KIM H Y, WON C H, et al. Treatment of leachate produced in stabilized landfills by coagulation and Fenton oxidation process [J]. Journal of the Chinese Institute of Chemical Engineers, 2001, 32: 425-429. [114] LAU I W C, WANG P, FANG H H. Organic removal of anaerobically treated leachate by Fenton coagulation [J]. Journal of Environmental Engineering, 2001, 127(7): 666-669. doi: 10.1061/(ASCE)0733-9372(2001)127:7(666) [115] GUO W, LI T, CHEN Q, et al. The roles of wavelength in the gaseous toluene removal with •OH from UV activated Fenton reagent [J]. Chemosphere, 2021: 129998. [116] HERNEY RAMIREZ J, VICENTE M A, MADEIRA L M. Heterogeneous photo-Fenton oxidation with pillared clay-based catalysts for wastewater treatment: A review [J]. Applied Catalysis B: Environmental, 2010, 98(1): 10-26. [117] FENG J, HU X, YUE P L, et al. Discoloration and mineralization of Reactive Red HE-3B by heterogeneous photo-Fenton reaction [J]. Water Research, 2003, 37(15): 3776-3784. doi: 10.1016/S0043-1354(03)00268-9 [118] ZHANG X, LI R, JIA M, et al. Degradation of ciprofloxacin in aqueous bismuth oxybromide (BiOBr) suspensions under visible light irradiation: A direct hole oxidation pathway [J]. Chemical Engineering Journal, 2015, 274: 290-297. doi: 10.1016/j.cej.2015.03.077 [119] BABIĆ S, PERIŠA M, ŠKORIĆ I. Photolytic degradation of norfloxacin, enrofloxacin and ciprofloxacin in various aqueous media [J]. Chemosphere, 2013, 91(11): 1635-1642. doi: 10.1016/j.chemosphere.2012.12.072 [120] GUINEA E, BRILLAS E, CENTELLAS F, et al. Oxidation of enrofloxacin with conductive-diamond electrochemical oxidation, ozonation and Fenton oxidation. A comparison [J]. Water Research, 2009, 43(8): 2131-2138. doi: 10.1016/j.watres.2009.02.025 [121] RODRIGUES S C, MANIERO M G, RATH S, et al. Degradation of flumequine by the Fenton and photo-Fenton processes: Evaluation of residual antimicrobial activity [J]. Science of the Total Environment, 2013, 445-446: 337-346. doi: 10.1016/j.scitotenv.2012.12.079 [122] GUO H, LI Z, LIN S, et al. Multi-catalysis induced by pulsed discharge plasma coupled with graphene-Fe3O4 nanocomposites for efficient removal of ofloxacin in water: Mechanism, degradation pathway and potential toxicity [J]. Chemosphere, 2021, 265: 129089. doi: 10.1016/j.chemosphere.2020.129089 [123] GOU Y, CHEN P, YANG L, et al. Degradation of fluoroquinolones in homogeneous and heterogeneous photo-Fenton processes: A review [J]. Chemosphere, 2021, 270: 129481. doi: 10.1016/j.chemosphere.2020.129481 [124] LUO X, WEI X, CHEN J, et al. Rate constants of hydroxyl radicals reaction with different dissociation species of fluoroquinolones and sulfonamides: Combined experimental and QSAR studies [J]. Water Research, 2019, 166: 115083. doi: 10.1016/j.watres.2019.115083 [125] MICHAEL I, HAPESHI E, MICHAEL C, et al. Solar Fenton and solar TiO2 catalytic treatment of ofloxacin in secondary treated effluents: Evaluation of operational and kinetic parameters [J]. Water Research, 2010, 44(18): 5450-5462. doi: 10.1016/j.watres.2010.06.053 [126] MICHAEL I, HAPESHI E, ACEÑA J, et al. Light-induced catalytic transformation of ofloxacin by solar Fenton in various water matrices at a pilot plant: Mineralization and characterization of major intermediate products [J]. Science of the Total Environment, 2013, 461-462: 39-48. doi: 10.1016/j.scitotenv.2013.04.054