-
随着国家在水环境治理政策支持力度的加大,国内江河湖泊水质已得到明显提升,但部分地表水水质仍还未能达到国家《地表水环境质量标准》(GB 3838-2002)中的III级标准,呈现出微污染特征[1-2]。强化混凝工艺因其具有成本低廉及操作简便等优点已成为微污染地表水处理中广泛使用的技术之一,可有效去除水体悬浮胶体颗粒及天然有机物,提升水质[3-6]。通常认为,决定混凝效果的核心是混凝剂[3, 7-9]。传统的混凝剂主要是铝盐及铁盐等。人们为了进一步提高无机混凝剂的混凝性能,还开发了基于铝铁盐的复合混凝剂[10-13]。然而无论是单一铝铁盐混凝剂,还是复合混凝剂,其在实际应用中残留的金属离子对环境均存在二次污染的风险[14-17]。
因此,混凝剂除需具备良好的混凝性能,同时还应具有绿色环保等重要特征。钛盐是+4价无机盐,具有较高电荷有着良好的混凝效果及环保特点;采用钛盐的混凝体系中产生的污泥还可用于制备TiO2,从而实现资源再利用并减少环境负担[18]。聚硅酸(PSA)具有绿色和低成本特征,已被研究证明其与钛盐复合使用的高效性,硅钛复合混凝剂具有优良的电中和与粘结架桥作用和环境友好特点[18-20]。近年来锌基混凝剂因其无毒、环保等特征而受到广泛关注[10, 11, 21-22]。此外,锌离子对水体中天然有机物腐殖酸(HA)具有较强的吸附性能,易生成Zn-HA复合物[23],可提高对有机微污染物的混凝去除效率。然而,基于PSA、钛盐及锌盐的无机复合混凝剂材料及其在针对有机微污染地表水净化处理中的应用至今还鲜有报道。
本文开发了一种新型的复合聚硅酸钛锌混凝剂(PSTZ),应用胶体滴定、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线衍射(XRD)和傅立叶变换红外(FTIR)进行材料结构表征。采用高岭土悬浊液和HA水溶液为模拟水样,详细考察了复合混凝剂中各组成含量及pH对PSTZ混凝性能及絮体结构的影响,同时与聚硅酸钛(PST)和聚硅酸锌(PSZ)进行性能对比;通过对其表观混凝性能、ζ电位及絮体特性等系统研究,对其协同混凝机制进行了深入探讨。除模拟水样外,还考察了PSTZ对采自南京羊山湖实际地表水的混凝效果,并与传统混凝剂聚合氯化铝(PACl)进行对比,进一步验证PSZT强化混凝的有效性。
新型复合聚硅酸钛锌混凝剂的合成、表征及混凝性能
Synthesis, characterization, and coagulation performance of a novel polysilicic-titanium-zinc composite coagulant
-
摘要: 采用聚硅酸(PSA)、钛盐及锌盐以不同摩尔比合成了一系列新型聚硅酸钛锌(PSTZ)混凝剂,并使用胶体滴定、扫描电子显微镜、透射电子显微镜、X射线衍射和傅立叶变换红外对药剂进行了结构表征。以高岭土悬浊液和腐殖酸(HA)水溶液为模拟水样,详细考察了各组成含量及pH对PSTZ混凝性能及絮体结构的影响,同时与聚硅酸钛(PST)和聚硅酸锌(PSZ)进行性能对比。结果表明,由于PSTZ具有层状和多孔的表面结构,PSTZ混凝性能优于PST和PSZ,形成絮体尺寸也大;进一步研究发现具有适中Si/Ti物质的量比(1:0.53)的PSTZ混凝剂具有更佳的电中和与粘结架桥作用;对Zn离子而言,特别是在pH 9.0—10.0下,易于与HA形成Zn-HA络合物,同时减轻Ti水解产物Ti(OH)5-的负面影响,进一步增强PSTZ混凝性能。此外,PSTZ在近中性pH条件下对高岭土悬浊液混凝性能最佳,而在酸性条件下对HA水溶液净化效果最优,这是由于PSTZ对不同污染物具有不同混凝机制所造成的。除模拟水样外,还考察了PSTZ对实际微污染地表水的混凝效果,并与传统混凝剂聚合氯化铝(PACl)进行对比,PSTZ表现出优于PACl的混凝性能,进一步证实了该复合混凝剂的有效性。该工作提供了一种绿色环保、可回收再利用的无机复合混凝剂,可有效地净化微污染地表水,提高用水安全。
-
关键词:
- 聚硅酸钛锌复合混凝剂 /
- 微污染地表水 /
- 强化混凝 /
- 混凝机理
Abstract: A series of new composite coagulants, polysilicic-titanium-zinc (PSTZ) was synthesized by polysilicic acid (PSA), titanium salt, and zinc salt with different molar ratios, which was characterized by colloidal titration, scanning electron microscopy, transmission electron microscopy, x-ray diffraction and fourier transform infrared spectra. The kaolin suspension and humic acid (HA) aqueous solution were used as simulated water samples, and the effects of the composition contents in PSTZ and pH on the coagulation performance and floc structure were investigated in detail, which were compared with those of polysilicic-titanium (PST) and polysilicic-zinc (PSZ). PSTZ exhibited better coagulation performance than PST and PSZ due to its porous surface structural characteristics, and the size of the flocs formed by PSTZ was larger. PSTZ with moderate Si/Ti molar ratio of 1: 0.53 had better charge neutralization and adsorption-bridging effects; besides, especially at the pH of 9.0—10.0, Zn could adsorb HA to form Zn-HA complexes, and simultaneously alleviate the negative effect of Ti hydrolysis product Ti(OH)5-, causing the improved coagulation performance of PSTZ. In addition, PSTZ showed better effects at the natural pH in coagulation of kaolin suspension but at the acidic condition in removal of HA due to their different coagulation mechanisms in removal of various pollutants. In addition to simulated water, the performance of PSTZ in coagulation of a real surface water sample was also investigated and compared with a conventional coagulant, polyaluminum chloride (PACl). The coagulation performance of PSTZ was better than that of PACl, further confirming the effectiveness of this composite coagulant. This work provides a green, environmentally friendly, recyclable inorganic composite coagulant, which can effectively purify micro-polluted surface water and improve water safety. -
图 3 (a) PSTs和(b) PSTZs混凝高岭土悬浮液后的残留浊度.
Figure 3. The performance of (a) PSTs and (b) PSTZs in coagulation of kaolin suspensions, the inset of Fig. 3a is the zeta potentials of supernatants coagulated by PSTs with the dose of 1.0 mg·L−1.
表 1 不同元素摩尔比制得的PST、PSTZ及PSZ的电荷密度以及pH
Table 1. Charge density and pH of PST, PSTZ, and PSZ prepared with different molar ratio of elements
混凝剂
Coagulants硅∶钛∶锌
Si∶Ti∶Zn a电荷密度/(mmol·L−1)
Charge densitypH b PST1 1∶2∶0 3.591 3.68 PST2 1∶1∶0 3.192 3.85 PST3 1∶0.53∶0 1.710 4.02 PST4 1∶0.25∶0 0.570 4.07 PSTZ1 1∶0.53∶0.5 2.394 4.07 PSTZ2 1∶0.53∶1.23 2.622 4.59 PSTZ3 1∶0.25∶1.23 0.741 4.24 PSZ1 1∶0∶1.23 0.456 5.75 a 物质的量比;b 混凝剂溶于离子水后的溶液pH值,混凝剂浓度为2.0 mg·L−1.
a Molar ratio; b The pH value of the solution after the coagulant with the concentration of 2.0 mg·L−1 was dissolved in ionized water.表 2 PSTZ2、PST3和PSZ1在各pH下对不同模拟废水的混凝性能和絮体特征
Table 2. Coagulation performance and floc properties of PSTZ2, PST3 and PSZ1 for coagulation of various synthetic wastewaters at different pH levels
模拟废水
Wastewater初始pH
Initial pH混凝剂
Coagulants最优投加量/(mg·L−1)
Optimal dosea残留浊度/NTU
Residual
turbidity溶液pH
Effluent pHζ电位/mV
Zeta potential平均粒径/μm
Average二维分形维数
D2高岭土悬浮液 3.14 PSTZ2 12.0 2.80 3.05 4.3±0.7 260±20 1.773±0.054 PST3 12.0 2.85 3.00 4.7±0.4 96±15 1.723±0.044 PSZ1b — — — — — — 5.90 PSTZ2 2.0 1.10 4.35 2.6±0.7 349±12 1.807±0.022 PST3 2.0 2.70 4.40 3.2±0.6 269±17 1.910±0.052 PSZ1b — — — — — — 9.93 PSTZ2 9.0 2.99 3.81 −8.2±1.0 200±14 1.844±0.065 PST3 12.0 2.78 3.58 −10.4±1.6 152±9 1.707±0.048 PSZ1 9.0 2.53 5.68 −34.4±2.8 230±22 1.882±0.081 模拟废水
Wastewater初始pH
Initial pH混凝剂
Coagulants最优投加量/(mg·L−1)
Optimal dosea残留腐殖酸/(mg·L−1)
Residual HA溶液pH
Effluent pHζ电位/mV
Zeta potential平均粒径/μm
Average二维分形维数
D2腐殖酸溶液 3.06 PSTZ2 2.0 1.69 3.06 −1.6±0.5 25.3±1.2 1.803±0.023 PST3 2.0 2.39 3.04 −0.7±0.9 14.2±0.9 1.739±0.037 PSZ1b — — — —
—
— 5.97 PSTZ2 8.0 1.40 3.77 −0.2±1.4 17.5±0.3 1.756±0.013 PST3 8.0 1.75 3.73 0.0±2.2 11.8±2.2 1.748±0.045 PSZ1b — — — — — — 9.91 PSTZ2 10.0 2.24 3.88 −11.0±1.7 10.0±1.2 1.706±0.045 PST3 10.0 2.49 3.86 −18.7±2.2 9.9±0.4 1.694±0.026 PSZ1 16.0 1.97 7.36 0.2±1.6 13.1±1.3 1.757±0.047 a 最优投加量是指当残留浊度首先低于3.00 NTU或残留HA首先低于2.50 mg·L−1时混凝剂的剂量;b 在酸性和近中性pH条件下,PSZ1的絮体ζ电位均为负,且混凝性能不佳.
a The optimal coagulant dose referred to the one at which the residual turbidity was first lower than 3.00 NTU or the residual HA was first lower than 2.50 mg·L−1;
b Under acidic and near-neutral pH conditions, the zeta potentials of flocs produced by PSZ1 were all negative and its coagulation performance was low. -
[1] 中华人民共和国生态环境部, 2019中国生态环境状况公报[EB], 2020. [2] 中华人民共和国生态环境部, GB 3838-2002, 地表水环境质量标准[S], 2002. [3] BRATBY J. Coagulation and flocculation in water and wastewater treatment, thirded[M]. IWA Publishing, London, 2016. [4] PIRSAHEB M, SHARAFI K, KARAMI A. Evaluating the performance of inorganic coagulants (poly aluminum chloride, ferrous sulfate, ferric chloride and aluminum sulfate) in removing the turbidity from aqueous solutions [J]. International Journal of Pharmacy & Technology, 2016, 8(2): 13168-13181. [5] VERMA A K, DASH R R, BHUNIA P. A review on chemical coagulation/flocculation technologies for removal of colour from textile wastewaters [J]. Journal of Environmental Management, 2012, 93(1): 154-168. [6] WEI H, GAO B Q, REN J, et al. Coagulation/flocculation in dewatering of sludge: A review [J]. Water Research, 2018, 143: 608-631. doi: 10.1016/j.watres.2018.07.029 [7] JIANG J. The role of coagulation in water treatment [J]. Current Opinion in Chemical Engineering, 2015, 8: 36-44. doi: 10.1016/j.coche.2015.01.008 [8] LEE C S, ROBINSON J, CHONG M F. A review on application of flocculants in wastewater treatment [J]. Process Safety and Environmental Protection, 2014, 92: 489-508. doi: 10.1016/j.psep.2014.04.010 [9] YANG R, LI H, HUANG M, et al. A review on chitosan-based flocculants and their applications in water [J]. Water Research, 2016, 95: 59-89. doi: 10.1016/j.watres.2016.02.068 [10] FU Y, ZHANG J, WANG Y, et al. Resource preparation of poly-Al-Zn-Fe (PAZF) coagulant from galvanized aluminum slag: Characteristics, simultaneous removal efficiency and mechanism of nitrogen and organic matters [J]. Chemical Engineering Journal, 2012, 203: 301-308. doi: 10.1016/j.cej.2012.07.045 [11] 杨青青. 聚硅酸硫酸锌铁絮凝剂的制备及其在含藻水中的应用[D]. 重庆: 重庆大学, 2015. YANG Q Q. The preparation of poly-silicate-sulfate-Zn-Fe flocculant and application in the algae water[D]. Chongqing: University of Chongqing, 2015(in Chinese).
[12] MOUSSAS P A, ZOUBOULIS A I. A study on the properties and coagulation behaviour of modified inorganic polymeric coagulant-Polyferric silicate sulphate (PFSiS) [J]. Separation and Purification Technology, 2008, 63: 475-483. doi: 10.1016/j.seppur.2008.06.009 [13] WAN Y, HUANG X, SHI B Y, et al. Reduction of organic matter and disinfection byproducts formation potential by titanium, aluminum and ferric salts coagulation for micro-polluted source water treatment [J]. Chemosphere, 2019, 219: 28-35. doi: 10.1016/j.chemosphere.2018.11.117 [14] GUIBAL E, VAN M. DEMPSEY B A, et al A review of the use of chitosan for the removal of particulate and dissolved contaminants [J]. Separation and Purification Technology, 2006, 41(11): 2487-2514. [15] RIZZO L, GENNARO A, GALLO M, et al. Coagulation/chlorination of surface water: A comparison between chitosan and metal salts [J]. Separation and Purification Technology, 2008, 62(1): 79-85. doi: 10.1016/j.seppur.2007.12.020 [16] BOLTO B, GREGORY J. Organic polyelectrolytes in water treatment [J]. Water Research, 2007, 41(11): 2301-2324. doi: 10.1016/j.watres.2007.03.012 [17] OKUDA T, NISHIJIMA W, SUGIMOTO M, et al. Removal of coagulant aluminum from water treatment residuals by acid [J]. Water Research, 2014, 60: 75-81. doi: 10.1016/j.watres.2014.04.041 [18] HUANG X, GAO B, WANG Y, et al. Coagulation performance and flocs properties of a new composite coagulant: Polytitanium-silicate-sulfate [J]. Chemical Engineering Journal, 2014, 245: 173-179. doi: 10.1016/j.cej.2014.02.018 [19] HUSSAIN S, AWAD J, SARKAR B, et al. Coagulation of dissolved organic matter in surface water by novel titanium (Ⅲ) chloride: Mechanistic surface chemical and spectroscopic characterization [J]. Separation and Purification Technology, 2019, 213: 213-223. doi: 10.1016/j.seppur.2018.12.038 [20] WANG D, TANG H. Modified inorganic polymer Flocculant-PFSi [J]. Water Research, 2001, 35: 3418-3428. doi: 10.1016/S0043-1354(01)00034-3 [21] ZENG Y, PARK J. Characterization and coagulation performance of a novel inorganic polymer coagulant-poly-zinc-silicate-sulfate [J]. Colloids and Surface A-Physicochemical and Engineering Aspect, 2009, 334: 147-154. [22] ZHU G, WANG Q, YIN J, et al. Toward a better understanding of coagulation for dissolved organic nitrogen using polymeric zinc-iron-phosphate coagulant [J]. Water Research, 2016, 100: 201-210. doi: 10.1016/j.watres.2016.05.035 [23] GENC-FUHRMAN H, MIKKELSEN P S, LEDIN A. Simultaneous removal of As, Cd, Cr, Cu, Ni and Zn from stormwater using high-efficiency industrial sorbents: Effect of pH, contact time and humic acid [J]. Science of the Total Environment, 2016, 566/567: 76-85. doi: 10.1016/j.scitotenv.2016.04.210 [24] WATSON M, TUBIC A, AGBABA J, et al. Response surface methodology: Process and product optimization using designed experiments, second ed[M]. John Wiley & Sons, New York, 2002. [25] ZHANG W X, YANG H, DONG L, et al. Efficient removal of both cationic and anionic dyes from aqueous solutions using a novel amphoteric straw-based adsorbent [J]. Carbohydrate Polymers, 2012, 90(2): 887-893. doi: 10.1016/j.carbpol.2012.06.015 [26] CHOI K Y J, DEMPSEY B A. In-line coagulation with low-pressure membrane filtration [J]. Water Research, 2004, 38(19): 4271-4281. doi: 10.1016/j.watres.2004.08.006 [27] WANG Z, PENG S, NAN J, et al. Quantitative analysis of cake characteristics based on SEM imaging during coagulation-ultrafiltration process [J]. Environmental Science and Pollution Research International, 2019, 26: 36296-36307. doi: 10.1007/s11356-019-06678-7 [28] WU H, LIU Z, YANG H, et al. Evaluation of chain architectures and charge properties of various starch-based flocculants for flocculation of humic acid from water [J]. Water Research, 2016, 96: 126-135. doi: 10.1016/j.watres.2016.03.055 [29] CHAKRABORTI R K, GARDNER K H, ATKINSONA J F, et al. Changes in fractal dimension during aggregation [J]. Water Research, 2003, 37: 873-883. doi: 10.1016/S0043-1354(02)00379-2 [30] ZHAO Y, SHON H, PHUNTSHO S, et al. Removal of natural organic matter by titanium tetrachloride: the effect of total hardness and ionic strength [J]. Journal of Environmental Management, 2014, 134: 20-29. doi: 10.1016/j.jenvman.2014.01.002 [31] ZHAO Y, GAO B, SHON H, et al. The effect of second coagulant dose on the regrowth of flocs formed by charge neutralization and sweep coagulation using titanium tetrachloride TiCl4 [J]. Journal of Hazardous Materials, 2011, 198: 70-77. doi: 10.1016/j.jhazmat.2011.10.015 [32] ZHAO Y, GAO B, QI Q, et al. Cationic polyacrylamide as coagulant aid with titanium tetrachloride for low molecule organic matter removal [J]. Journal of Hazardous Materials, 2013, 258: 84-92. [33] 张鹏, 王雨露, 赵冬琴, 等. 聚磷氯化铁镁钛混凝剂的制备与表征 [J]. 环境化学, 2018, 37(12): 2677-2687. doi: 10.7524/j.issn.0254-6108.2018012104 ZHANG P, WANG Y L, ZHAO D Q, et al. Preparation and characterization of polychlorinated ferric magnesium titanium(PFMTC) [J]. Environmental Chemistry, 2018, 37(12): 2677-2687(in Chinese). doi: 10.7524/j.issn.0254-6108.2018012104
[34] 陈伟. 铁钛混凝剂的制备及在除藻和控制藻源膜污染中的应用研究[D]. 重庆: 重庆大学, 2016. CHEN W. The preparation of Fe-Ti based coagulant and its application in algae removal and membrane fouling controlling[D]. Chongqing: University of Chongqing, 2016(in Chinese).
[35] XU B, ZHANG Y J, LI X, et al. A simple preparation route for polysilicate titanium salt from spent titanium solutions [J]. Water Science and Technology, 2019, 80: 1347-1356. doi: 10.2166/wst.2019.383 [36] WEI Y, DING A, DONG L, et al. Characterization and coagulation performance of an inorganic coagulant-poly-magnesium-silicate-chloride in treatment of simulated dyeing wastewater [J]. Colloids and Surface A-Physicochemical and Engineering Aspect, 2015, 470: 137-141. [37] TANG Y N, HU X Y, CAI J, et al. An enhanced coagulation using a starch-based coagulant assisted by polysilicic acid in treating simulated and real surface water [J]. Chemosphere, 2020, 259: 127464. doi: 10.1016/j.chemosphere.2020.127464 [38] WEI Y X, DONG X Z, DING A M, et al. Characterization and coagulation-flocculation behavior of an inorganic polymer coagulant-poly-ferric-zinc-sulfate [J]. Journal of the Taiwan Institute of Chemical Engineers, 2016, 58: 351-356. doi: 10.1016/j.jtice.2015.06.004 [39] WANG X, GAN Y, GUO S, et al. Advantages of titanium xerogel over titanium tetrachloride and polytitanium tetrachloride in coagulation: A mechanism analysis [J]. Water Research, 2018, 132: 350-360. doi: 10.1016/j.watres.2017.12.081 [40] WEI H, REN J, LI A, et al. Sludge dewaterability of a starch-based flocculant and its combined usage with ferric chloride [J]. Chemical Engineering Journal, 2018, 349: 737-747. doi: 10.1016/j.cej.2018.05.151 [41] LIU Z, HUANG H, LI A, et al. Flocculation and antimicrobial properties of a cationized starch [J]. Water Research, 2017, 119: 57-66. doi: 10.1016/j.watres.2017.04.043 [42] 王毅力, 卢佳, 杜白雨, 等. 聚合氯化铁-腐殖酸(PFC-HA)絮体的不同拓扑空间下分形维数的研究 [J]. 环境科学学报, 2008, 28(4): 606-615. doi: 10.3321/j.issn:0253-2468.2008.04.003 WANG Y L, LU J, DU B, et al. Fractal dimension of polyferric chloride humic acid(PFC-HA) flocs in different topological spaces [J]. Acta Scientiae Circumstantiae, 2008, 28(4): 606-615(in Chinese). doi: 10.3321/j.issn:0253-2468.2008.04.003
[43] XIAO F, XIAO P, WANG D S. Influence of allochthonous organic matters on algae removal: Organic removal and floc characteristics [J]. Colloids and Surface A-Physicochemical and Engineering Aspect, 2019, 583: 123995. [44] GREGOR J, NOKES C, FENTON E. Optimising natural organic matter removal from low turbidity waters by controlled pH adjustment of aluminium coagulation [J]. Water Research, 1997, 31(12): 2949-2958. doi: 10.1016/S0043-1354(97)00154-1 [45] NARKIS N, REBHUN M. Stoichiometric relationship between humic and fulvic acids and flocculants [J]. Journal American Water Works Association, 1977, 69(6): 325-328. doi: 10.1002/j.1551-8833.1977.tb06752.x