-
持久性有毒有机污染物(persistent toxic organic substances, PTOS),作为持久性有毒化学品(persistent toxic substances , PTS)中最重要的组成部分,主要包括原油和精炼油泄漏,化石燃料、木材和煤灰的不完全燃烧,以及金属冶炼有关过程产生的多环芳烃[1];广泛用于农业和工业生产的有机氯农药(organochlorine pesticides, OCPs)和多氯联苯(polychlorinated biphenyls, PCBs);用于各种消费品和工业过程的全氟和多氟烷基化合物(perfluoroalkyl and polyfluoroalkyl substances, PFASs)[2],作为阻燃剂出现在电子产品、纺织品、建筑材料或家具等组成中的多溴二苯醚(poly brominated diphenyl ethers, PBDEs)[3]以及一些损害机体正常内分泌功能的环境内分泌干扰物(environmental endocrine disruptors, EED)等。常见的主要PTOS种类及性质见表1,这些高毒性和高脂溶性污染物[4]来源多样,环境行为复杂,且难以降解,极大的威胁着生态环境与人体健康[5]。由于PTOS在全球普遍存在,且具有生物累积性、难降解性及内分泌干扰等特性,探索和采用有效的方法来快速地去除PTOS,开发建立环境介质中快速痕量检测PTOS的方法,成为了生态环境领域研究的重要方面[6]。
近几十年来,研究者针对各类PTOS的去除方法已有大量报道,如高级氧化法[7]、生物降解法[8]、膜分离法[9]、吸附法[10]等。其中,吸附法由于操作简便、可扩展性强、成本效益高,以及高达95%以上的污染物去除效率[11],一直以来备受青睐,而吸附剂则是影响吸附性能的重要因素[12-13]。
目前,商业中一般采用沸石[14]、活性炭[15]、黏土[16]等微孔材料[17]作为吸附剂。然而,这些传统吸附剂往往因吸附速率慢,吸附能力低且再生困难等问题在实际应用中受到限制[18-19]。因此,设计合成新型高效可再生的吸附材料成为了亟待解决的关键问题[20-21]。
金属-有机骨架(metal organic frameworks, MOFs)作为一类由金属离子或金属簇与有机配体通过配位作用自组装而成的一种新型的多孔材料[22],受到了广泛关注和重视[23-28]。根据金属离子与有机配体种类及连接方式的不同[29],MOFs大致可分为网状金属-有机骨架材料(isoreticular metal-organic frameworks, IRMOF)、来瓦希尔骨架材料 (material institute lavoisier frameworks, MIL)、类沸石咪唑酯骨架材料(zeoliticim idazolate framework, ZIF)和UiO (University of Oslo)系列[30]。由于MOFs具有高的孔隙率和比表面积,易调控的孔径和孔结构以及良好的结晶度,使其广泛应用于吸附去除、传感检测[31]、催化[32]、药物传递[33]、气体储存[34]、质子传导[35]、分离[36]等方面。如表2所示,相比于传统吸附剂,MOFs因为其独特的形貌、规则均匀的气孔、丰富的配位不饱和中心,以及表面可功能化,展示了其高效吸附去除环境中抗生素[37-40]、止疼药 [41-42]、芳香类化合物[43-45]、农药[46-48]、染料[49-51]及重金属[52-54]等各类污染物的良好性能。另外,由于有些MOFs自身具有丰富的发光中心,主要可通过金属离子发光、配体发光、电荷转移发光以及客体分子发光等方式释放荧光[55],且由于MOFs的多孔结构及优异的吸附性能,可将分析物分子快速吸附富集在孔道中,使其成为了一类性能良好的传感器材料。
金属有机骨架材料吸附与荧光检测水中持久性有毒有机污染物的研究与应用
Highly efficient adsorption and fluorescence detection of persistent toxic organic pollutants in water with MOFs: A review
-
摘要: 近年来,环境中的持久性有毒有机污染物(persistent toxic organic substances, PTOS)因具有毒性高、生物累积性、致癌致突变性和内分泌干扰等特性引起了广泛关注,但是其在水环境介质中含量低、可与其他物质发生相互作用、迁移转化能力强等特点为其高效分离去除和快速的痕量分析检测带来了挑战。因此,开发新材料、新技术、新方法用于水中PTOS的高效分离去除、建立其快速的痕量分析检测方法对于水环境保护、再生水安全利用以及PTOS的环境风险评价具有重要意义。相对于传统的吸附材料,金属有机骨架材料(metal organic frameworks, MOFs)由于其较高的孔隙率和比表面积,易调控的孔径,大量的活性位点、可功能化以及具有良好的发光特性等优点,在吸附去除和分析检测环境中PTOS表现出优异性能。本文综述了MOFs、功能化MOFs以及MOFs衍生物材料在水溶液中吸附去除PTOS的研究与应用进展,归纳总结相应的吸附机理,特别对如何通过功能化手段来提高MOFs材料对PTOS的吸附性能进行了讨论。同时,本文还对基于吸附的荧光传感方法检测PTOS进行了归纳总结,对未来MOFs材料在吸附去除和检测水环境中PTOS方面的应用进行了展望。
-
关键词:
- 金属有机骨架材料 /
- 功能化 /
- 持久性有毒有机污染物 /
- 吸附 /
- 荧光传感
Abstract: Persistent Toxic Organic Substances (PTOS) have aroused extensive concerns due to their bioaccumulation, long-distance transmission, carcinogenicity, mutagenicity and endocrine disturbance. However, owning to their low content, co-existing with other substances and easy migration and transformation in environmental media, highly efficient removing them from water and their rapid and trace detection techniques are becoming emergence for water environment protection, safe utilization of recycled-water and their environmental risk assessment. Compared to traditional adsorption materials, MOFs synthesized via the self-assembling combination of metals and organic ligands are considered as potential highly efficient adsorbents to removal and detection of PTOS from water due to their high specific surface areas, good adsorption performance, tunable porosity, modifiable structures, and great fluorescence property. In this paper, we comprehensively summarized the development of MOFs, functional MOFs and MOFs derivative materials applied in adsorptive removal of PTOS from aqueous solution. We discussed the adsorptive purifications of contaminated water with MOFs materials and the mechanism of adsorption of various PTOS by MOFs materials. In particularly, in order to improve the adsorption capacity of MOFs materials to PTOS, the strategies of functionalizing MOFs were comprehensively summarized. In addition, the fluorescence sensing methods for detecting PTOS based on the adsorption of PTOS with MOFs are summarized. Finally, the challenges of further application of MOFs materials in adsorption and removal of PTOS from water are briefly commented, and the future research prospects in this field are prospected.-
Key words:
- MOFs /
- functional /
- persistent toxic organic substances /
- adsorption /
- fluorescence sensing
-
图 5 (a)解析溶剂种类对再生UiO-66-COOH吸附吲哚的影响 (b)乙醇洗涤次数对再生UiO-66-COOH吸附吲哚的影响
Figure 5. (a) Effect of solvents applied in the regeneration of UiO-66-COOH for the adsorption of IND; (b) effect of regeneration cycles on the performances of adsorptive removal of IND over UiO-66-COOH regenerated by washing with ethanol.
表 1 环境中存在的主要PTOSTable 1 Major PTOS in the environment
PTOS 主要类别
Main
categories用途
Application主要代表物质
Principal
representative
substance毒性
Virulence农药 有机氯农药 防治植物病、虫、草害 六六六、滴滴涕 刺激神经中枢,产生小脑失调、造血器官障碍 有机磷农药 敌敌畏、敌百虫、马拉硫磷 神经中毒症状,如出汗、震颤严重者会出现呼吸麻痹,甚至死亡 有机氮农药 敌草隆、灭草隆 对人、畜的急性毒性都不大,不易发生药害 药物及个人
护理产品抗生素 治疗生物体内被微小的病原体所引发的感染现象 磺胺甲恶唑、氧氟沙星、氯霉素 破坏肠道微生物环境,导致肝、肾功能受损 激素 对机体的代谢、生长、发育、繁殖、性别、性欲和性活动等起调节作用 雌酮、雌二醇、炔雌醇 引起内分泌紊乱失调,引起肥胖 止痛剂和消炎药 抗炎、止痛、抗风湿、退热和抗凝血等作用 双氯酚酸、布洛芬、
对乙酰氨基酚刺激肠胃,导致肝、肾功能受损 芳香剂 改善或增强香味特征 佳乐麝香、吐纳麝香 刺激皮肤黏膜,损害神经系统 工业化学品 多氯联苯 可作绝缘油、热载体和润滑油等,还可作为许多工业产品的添加剂 三氯联苯、四氯联苯、 易累积在脂肪组织,造成脑部、皮肤及内脏的疾病,并影响神经、生殖及免疫系统 六氯苯 用于生产花炮,作焰火色剂 — 影响肝脏、中枢神经系统和心血管系统,导致皮肤溃疡 生产中的副产品 二噁英 — 2,3,7,8-四氯二苯并-对-二噁英(2,3,7,8-TCDD) 剧毒,可能导致染色体损伤、心力衰竭、癌症等 呋喃 用于制取吡咯、噻吩、
四氢呋喃等— 吸入后可引起头痛、头晕、恶心、呼吸衰竭。 表 2 不同吸附剂对水环境中污染物的吸附量
Table 2. The adsorption capacity of pollutants with different adsorbents
污染物
Pollutant吸附剂
Adsorbent吸附量/(mg·g-1)
Amount adsorption参考文献
References氧氟沙星 氮化硼纳米片 72.5 [37] 膨润土CVL黏土 116.72 [38] MIL-101(Cr)-SO3H 433.7 [39] ZIF-8 194.1 [40] 双氯芬酸钠 碳纳米管 27 [41] 商业活性炭 76 [42] UiO-66 189 [42] 18%SO3H-UiO-66 263 [42] 吲哚 活性炭 118 [43] MIL-101 410 [44] 喹啉 活性炭 145 [43] MIL-101 446 [44] 草甘膦 MgAl-LDH 184.6 [45] 蒙脱石 49.9 [46] 明矾 85.9-113.6 [47] UiO-67 537 [48] Pb2+ PBC@SiO2-NH2 120 [49] g-C3N4/Mt 182.7 [50] ZIF-8@GO 356 [51] 甲基蓝 坡缕石 57.47 [52] 沸石/壳聚糖复合材料 199 [53] Amine-MOF-Fe 312.5 [54] 表 3 部分MOFs材料对PTOS分子的吸附机理
Table 3. Adsorption mechanism of PTOS in MOFs
PTOS分子
PTOSMOFs材料
MOFs material吸附量/(mg·g−1)
Amount adsorption机理
Mechanism参考文献
ReferencesTNR UiO-66-NH2 24 氢键 [69] PA UiO-66-NH2 22.5 氢键 [69] 2,4-DNP UiO-66-NH2 29.6 氢键 [69] 对氯苯氧异丁酸 MIL-101 312 静电作用 [70] 四环素 MLS 119.2 表面络合、π-π相互作用、氢键以及静电作用 [71] ZIF-8 303.0 π-π作用 [72] 邻苯二甲酸 ZIF-8 654 静电作用、酸碱作用 [73] UiO-66Zr) 187 静电作用、酸碱作用 [73] 丙硫膦 ZIF-8 210.8 氢键 [74] ZIF-67 261.1 氢键 [74] 呋喃西林 BUT-12 — 疏水作用 [75] 对氯间二甲苯酚 (OH)3-MIL 101 (Cr) 79 氢键 [76] 苯酚 ZIF-67 378 静电作用 [77] 全氟辛酸 MIL-101(Cr) 459.6 静电作用 [78] 苯并三唑 MOF-5(Co) 389 氢键、π-π作用 [79] 苯并咪唑 MOF-5(Co) 175 氢键、π-π作用 [79] 洛克沙胂 MIL-100(Fe) 387 配位不饱和位点 [80] MCPP UiO-66 370 静电作用 [81] 表 4 MOFs材料对污染物的荧光检测
Table 4. Fluorescence detection of pollutants by MOFs
MOFs 污染物
Pollutant机理
Mechanism检出限
LOD参考文献
ReferencesFCS-1 磺胺类抗生素 电子由FCS-1的导带转移到磺胺类抗生素的最低空轨道上 — [112] CTGU-7 奥硝唑 分析物附着在MOF表面,减小配体到金属中心的能量转移,实现荧光淬灭 0.8 μmol·L−1 [113] 硝基苯酚 0.3—1.5 mg·L−1 PCN-128Y 四环素 光诱导电子转移过程 30 nmol·L−1 [114] Eu-BAC 呋喃妥因 荧光共振能量转移 0.21 μmol·L−1 [115] 呋喃西林 0.16 μmol·L−1 BUT-172/BUT-173 诺氟沙星等喹
诺酮类抗生素MOF和抗生素分子之间对激发光的竞争吸收及荧光共振能量转移过程 0.18—0.22 μmol·L−1 [31] Zr-LMOF 甲基对硫磷 甲基对硫磷中强吸电子基团-NO2的存在导致Zr-LMOF光激电子向对硫磷甲基转移,引起荧光淬灭 0.43 nmol·L−1 [116] [Y1.8Eu0.1Tb0.1(PDA)3(H2O)1]2H2O 谷硫磷 静态猝灭,激发光的竞争吸收以及荧光共振能量转移 212 μg·L−1 [117] Zn2(bpdc)2(bpee) DNT 光诱导电子转移 — [118] FJI-C8 2,4-DNP 荧光共振能量转移和12,4-DNP与MOF之间对于紫外光的竞争吸收 0.0028 mmol·L−1 [119] Tb3+@Cd-MOF Fe3+ Fe3+与Tb3+之间的离子交换引起的荧光淬灭 0.01 mmol·L−1 [120] Cr2O72- Cr2O72−与Tb3+@Cd-MOF配体之间对于紫外光的竞争吸收 0.012 mmol·L−1 Tb-MOF Pb2+ Pb2+的电子结构和Tb-MOF中酚氧的Lewis碱性位点之间的相互作用显著的增强了配体向Tb3+之间能量转移的效率 — [121] -
[1] YOON S J, HONG S, KIM T, et al. Occurrence and bioaccumulation of persistent toxic substances in sediments and biota from intertidal zone of Abu Ali Island, Arabian Gulf [J]. Marine Pollution Bulletin, 2019, 144: 243-252. doi: 10.1016/j.marpolbul.2019.05.008 [2] SCHULTZ M M, BAROFSKY D F, FIELD J A. Fluorinated alkyl surfactants [J]. Environ Eng, 2003, 20(5): 487-501. [3] FROMME H, BWCHER G, HILGER B, et al. Brominated flame retardants-Exposure and risk assessment for the general population [J]. International Journal of Hygiene and Environmental Health, 2016, 219(1): 1-23. doi: 10.1016/j.ijheh.2015.08.004 [4] XIE F, YANG M, JIANG M, et al. Carbon-based nanomaterials-A promising electrochemical sensor toward persistent toxic substance [J]. TrAC Trends in Analytical Chemistry, 2019, 119: 115624. doi: 10.1016/j.trac.2019.115624 [5] BARAKAT A O. Assessment of persistent toxic substances in the environment of Egypt [J]. Environment International, 2004, 30(3): 309-322. doi: 10.1016/S0160-4120(03)00181-8 [6] XU J, LI K, ZHANG S, et al. Removal of endocrine-disrupting chemicals from environment using a robust platform based on metal-organic framework nanoparticles [J]. ACS Applied Nano Materials, 2020, 3(4): 3646-3651. doi: 10.1021/acsanm.0c00347 [7] HE L, ZHANG Y, ZHENG Y, et al. Degradation of tetracycline by a novel MIL-101(Fe)/TiO2 composite with persulfate [J]. Journal of Porous Materials, 2019, 26(6): 1839-1850. doi: 10.1007/s10934-019-00778-y [8] BENSON J J, SAKKOS J K, RADIAN A, et al. Enhanced biodegradation of atrazine by bacteria encapsulated in organically modified silica gels [J]. Journal of Colloid and Interface Science, 2018, 510: 57-68. doi: 10.1016/j.jcis.2017.09.044 [9] WANG J, ZHANG Y, WANG Y, et al. Bimetallic Ce-UiO-66-NH2/diatomite (CUD) self-assembled membrane simultaneously with synergetic effect of phase equilibrium and rate separation [J]. Journal of Membrane Science, 2020, 598: 117730. doi: 10.1016/j.memsci.2019.117730 [10] NEHRA M, DILBAGHI N, SINGHAL N K, et al. Metal organic frameworks MIL-100(Fe) as an efficient adsorptive material for phosphate management [J]. Environmental Research, 2019, 169: 229-236. doi: 10.1016/j.envres.2018.11.013 [11] WANG D, JIA F, WANG H, et al. Simultaneously efficient adsorption and photocatalytic degradation of tetracycline by Fe-based MOFs [J]. Journal of Colloid and Interface Science, 2018, 519: 273-284. doi: 10.1016/j.jcis.2018.02.067 [12] ZHANG N, ISHAG A, LI Y, et al. Recent investigations and progress in environmental remediation by using covalent organic framework-based adsorption method: A review [J]. Journal of Cleaner Production, 2020, 277: 123360. doi: 10.1016/j.jclepro.2020.123360 [13] BHATNAGAR A, SILLANPAA M. Removal of natural organic matter (NOM) and its constituents from water by adsorption - A review [J]. Chemosphere, 2017, 166: 497-510. doi: 10.1016/j.chemosphere.2016.09.098 [14] JIANG N, SHANG R, HEIJMAN S G J, et al. Adsorption of triclosan, trichlorophenol and phenol by high-silica zeolites: Adsorption efficiencies and mechanisms [J]. Separation and Purification Technology, 2019, 235: 116152. [15] LYU Y, LIU X, LIU W, et al. Adsorption/oxidation of ethyl mercaptan on Fe-N-modified active carbon catalyst [J]. Chemical Engineering Journal, 2020, 393: 124680. doi: 10.1016/j.cej.2020.124680 [16] KUMAR P, BANSAK V, KIM K, et al. Metal-organic frameworks (MOFs) as futuristic options for wastewater treatment [J]. Journal of Industrial and Engineering Chemistry, 2018, 62: 130-145. doi: 10.1016/j.jiec.2017.12.051 [17] KUMAR P, KIM K, LEE J, et al. Metal-organic framework for sorptive/catalytic removal and sensing applications against nitroaromatic compounds [J]. Journal of Industrial and Engineering Chemistry, 2020, 84: 87-95. doi: 10.1016/j.jiec.2019.12.024 [18] XU W, HUSSAIN A, LIU Y. A review on modification methods of adsorbents for elemental mercury from flue gas [J]. Chemical Engineering Journal (Lausanne, Switzerland:1996), 2018, 346: 692-711. [19] ZHAO R, MA T, ZHAO S, et al. Uniform and stable immobilization of metal-organic frameworks into chitosan matrix for enhanced tetracycline removal from water [J]. Chemical Engineering Journal (Lausanne, Switzerland:1996), 2020, 382: 122893. [20] MU R, LIU B, CHEN X, et al. Hydrogel adsorbent in industrial wastewater treatment and ecological environment protection [J]. Environmental Technology & Innovation, 2020, 20: 101107. [21] LU T, ZHU Y, QI Y, et al. Tunable superporous magnetic adsorbent prepared via eco-friendly Pickering MIPEs for high-efficiency adsorption of Rb+ and Sr2+ [J]. Chemical Engineering Journal (Lausanne, Switzerland:1996), 2019, 368: 988-998. [22] ROCIO-BAUTISTA P, MARTINEZ-BENITO C, PINO V, et al. The metal-organic framework HKUST-1 as efficient sorbent in a vortex-assisted dispersive micro solid-phase extraction of parabens from environmental waters, cosmetic creams, and human urine [J]. Talanta, 2015, 139: 13-20. doi: 10.1016/j.talanta.2015.02.032 [23] ISLAMOGLU T, CHEN Z, WASSON M C, et al. Metal–Organic Frameworks against toxic chemicals [J]. Chemical Reviews, 2020, 120(16): 8130-8160. doi: 10.1021/acs.chemrev.9b00828 [24] RASHEEDT, BILAL M, HASSAN A A, et al. Environmental threatening concern and efficient removal of pharmaceutically active compounds using metal-organic frameworks as adsorbents [J]. Environmental Research, 2020, 185: 109436. doi: 10.1016/j.envres.2020.109436 [25] JOSEPH L, JUN B, JANG M, et al. Removal of contaminants of emerging concern by metal-organic framework nanoadsorbents: A review [J]. Chemical Engineering Journal, 2019, 369: 928-946. doi: 10.1016/j.cej.2019.03.173 [26] KITAO T, ZHANG Y, KITAGAWA S, et al. Hybridization of MOFs and polymers [J]. Chemical Society Reviews, 2017, 46(11): 3108-3133. doi: 10.1039/C7CS00041C [27] KARMAKAR A, PRABAKARAN V, ZHAO D, et al. A review of metal-organic frameworks (MOFs) as energy-efficient desiccants for adsorption driven heat-transformation applications [J]. Applied Energy, 2020, 269: 115070. doi: 10.1016/j.apenergy.2020.115070 [28] JERME C, FATEEVA A, GUO Y, et al. Water adsorption in MOFs: Fundamentals and applications [J]. Chemical Society Reviews, 2014, 43(16): 5594-5617. doi: 10.1039/C4CS00078A [29] 崔继方, 崔文权. 金属有机骨架材料在光催化领域的应用研究进展 [J]. 陶瓷, 2019, 11: 65-70. doi: 10.3969/j.issn.1002-2872.2019.11.008 CUI J F, CUI W Q. Advance of metal organic framework material in catalysis application [J]. Ceramic, 2019, 11: 65-70(in Chinese). doi: 10.3969/j.issn.1002-2872.2019.11.008
[30] 张贺. 金属有机骨架材料在吸附分离研究中的应用进展 [J]. 化学学报, 2017, 75: 841-859. doi: 10.6023/A17040168 ZHANG H, LI G, ZHANG K. Advances of metal-organic frameworks in adsorption and separation applications [J]. Acta Chimica. Sinica, 2017, 75: 841-859(in Chinese). doi: 10.6023/A17040168
[31] ZHONG W, LI R, LV J, et al. Two isomeric In(Ⅲ)-MOFs: unexpected stability difference and selective fluorescence detection of fluoroquinolone antibiotics in water [J]. Inorganic Chemistry Frontiers, 2020, 7(5): 1161-1171. doi: 10.1039/C9QI01490J [32] 赵玲, 刘恒恒, 胡晴, 等. 金属有机骨架材料MOF-5催化吸附SO2 [J]. 环境化学, 2017, 36(9): 1914-1922. doi: 10.7524/j.issn.0254-6108.2016110901 ZHAO L, LIU H H, HU Q, et al. Synthesis of MOF-5 catalysts and their catalytic oxidation of sulfur dioxide [J]. Environmental Chemistry, 2017, 36(9): 1914-1922(in Chinese). doi: 10.7524/j.issn.0254-6108.2016110901
[33] HORCAJADA P, CHALATI T, SERRE C, et al. Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging [J]. Nature Materials, 2009, 9(2): 172-178. [34] YANG X, XU Q. Bimetallic metal-organic frameworks for gas storage and separation [J]. Crystal Growth & Design, 2017, 17(4): 1450-1455. [35] RAMASWAMY P, WONG N E, SHIMIZU G K. MOFs as proton conductors-challenges and opportunities [J]. Chem Soc Rev, 2014, 43(16): 5913-5932. doi: 10.1039/C4CS00093E [36] LI J, SCULLEY J, ZHOU H. Metal-organic frameworks for separations [J]. Chemical Reviews, 2011, 112(2): 869-932. [37] BANGARI R S, SINHA N. Adsorption of tetracycline, ofloxacin and cephalexin antibiotics on boron nitride nanosheets from aqueous solution [J]. Journal of Molecular Liquids, 2019, 293: 111376. doi: 10.1016/j.molliq.2019.111376 [38] ANTONELLI R, MARTINS F R, MALPASS G R P, et al. Ofloxacin adsorption by calcined Verde-lodo bentonite clay: Batch and fixed bed system evaluation [J]. Journal of Molecular Liquids, 2020, 315: 113718. doi: 10.1016/j.molliq.2020.113718 [39] GUO X, KANG C, HUANG H, et al. Exploration of functional MOFs for efficient removal of fluoroquinolone antibiotics from water [J]. Microporous and Mesoporous Materials, 2019, 286: 84-91. doi: 10.1016/j.micromeso.2019.05.025 [40] YU R, WU Z. High adsorption for ofloxacin and reusability by the use of ZIF-8 for wastewater treatment [J]. Microporous and Mesoporous Materials, 2020, 308: 110494. doi: 10.1016/j.micromeso.2020.110494 [41] WEI H, DENG S, HUANG Q, et al. Regenerable granular carbon nanotubes/alumina hybrid adsorbents for diclofenac sodium and carbamazepine removal from aqueous solution [J]. Water Res, 2013, 47(12): 4139-4147. doi: 10.1016/j.watres.2012.11.062 [42] HASAN Z, KHAN N A, JHUNG S H. Adsorptive removal of diclofenac sodium from water with Zr-based metal-organic frameworks [J]. Chemical Engineering Journal, 2016, 284: 1406-1413. doi: 10.1016/j.cej.2015.08.087 [43] WEN J, HAN X, LIN H, et al. A critical study on the adsorption of heterocyclic sulfur and nitrogen compounds by activated carbon: Equilibrium, kinetics and thermodynamics [J]. Chemical Engineering Journal (Lausanne, Switzerland:1996), 2010, 164(1): 29-36. [44] AHMED I, JHUNG S H. Remarkable adsorptive removal of nitrogen-containing compounds from a model fuel by a graphene oxide/MIL-101 composite through a combined effect of improved porosity and hydrogen bonding [J]. J Hazard Mater, 2016, 314: 318-325. doi: 10.1016/j.jhazmat.2016.04.041 [45] LI F, WANG Y, YANG Q, et al. Study on adsorption of glyphosate (N-phosphonomethyl glycine) pesticide on MgAl-layered double hydroxides in aqueous solution [J]. J. Hazard Mater, 2005, 125: 89-95. doi: 10.1016/j.jhazmat.2005.04.037 [46] KHOURY G A, GEHRIS T C,TRIBE L, et al. Glyphosate adsorption on montmorillonite: an experimental and theoretical study of surface complexes [J]. Appl Clay Sci, 2010, 50: 167-175. doi: 10.1016/j.clay.2010.07.018 [47] HU Y S, ZHAO Y Q, SOROHAN B. Removal of glyphosate from aqueous environment by adsorption using water industrial residual [J]. Desalination, 2011, 271: 150-156. doi: 10.1016/j.desal.2010.12.014 [48] ZHU X, LI B, YANG J, et al. Effective adsorption and enhanced removal of organophosphorus pesticides from aqueous solution by Zr-Based MOFs of UiO-67 [J]. ACS Applied Materials & Interfaces, 2014, 7(1): 223-231. [49] LIU Y, XU J, CAO Z, et al. Adsorption behavior and mechanism of Pb(Ⅱ) and complex Cu(Ⅱ) species by biowaste-derived char with amino functionalization [J]. Journal of Colloid and Interface Science, 2020, 559: 215-225. doi: 10.1016/j.jcis.2019.10.035 [50] WAN X, KHAN M A, WANG F, et al. Facile synthesis of protonated g-C3N4 and acid-activated montmorillonite composite with efficient adsorption capacity for PO43- and Pb(Ⅱ) [J]. Chemical Engineering Research & Design, 2019, 152: 95-105. [51] WANG J, LI Y, LV Z, et al. Exploration of the adsorption performance and mechanism of zeolitic imidazolate framework-8@graphene oxide for Pb(Ⅱ) and 1-naphthylamine from aqueous solution [J]. J Colloid Interface Sci, 2019, 542: 410-420. doi: 10.1016/j.jcis.2019.02.039 [52] DALI Y L, BELAROUI L S, LOPEZ-GALINDO A. Adsorption of a cationic methylene blue dye on an Algerian palygorskite [J]. Applied Clay Science, 2019, 179: 105145. doi: 10.1016/j.clay.2019.105145 [53] KHANDAY W A, ASIF M, HAMEED B H. Cross-linked beads of activated oil palm ash zeolite/chitosan composite as a bio-adsorbent for the removal of methylene blue and acid blue 29 dyes [J]. Int J Biol Macromol, 2017, 95: 895-902. doi: 10.1016/j.ijbiomac.2016.10.075 [54] PAIMAN S H, RAHMAN M A, UCHIKOSHI T, et al. Functionalization effect of Fe-type MOF for methylene blue adsorption [J]. Journal of Saudi Chemical Society, 2020, 24(11): 896-905. doi: 10.1016/j.jscs.2020.09.006 [55] 张爱琴, 郭斌, 柳利龙. 荧光金属有机骨架材料在离子检测中的应用[J]. 广州化工, 2020, 48(24): 20-23. ZHANG A Q, GUO B, LIU L L. Application of luminescent metal-organic frameworks in ions detection[J] Guangzhou Chemical Industry, 2020, 48(24): 20-23(in Chinese).
[56] GAO Y, LIU G, GAO M, et al. Recent advances and applications of magnetic metal-organic frameworks in adsorption and enrichment removal of food and environmental pollutants [J]. Critical Reviews in Analytical Chemistry, 2019, 50(5): 1-13. [57] AHMED I, BHADRA B N, LEE H J, et al. Metal-organic framework-derived carbons: Preparation from ZIF-8 and application in the adsorptive removal of sulfamethoxazole from water [J]. Catalysis Today, 2018, 301: 90-97. doi: 10.1016/j.cattod.2017.02.011 [58] SARKER M, AHMED I, JHUNG S H. Adsorptive removal of herbicides from water over nitrogen-doped carbon obtained from ionic liquid@ZIF-8 [J]. Chemical Engineering Journal, 2017, 323: 203-211. doi: 10.1016/j.cej.2017.04.103 [59] WANG X, MA X, WANG H, et al. A zinc(II) benzene tricarboxylate metal organic framework with unusual adsorption properties, and its application to the preconcentration of pesticides [J]. Microchimica Acta, 2017, 184(10): 3681-3687. doi: 10.1007/s00604-017-2382-1 [60] DUO H, LU X, WANG S, et al. Synthesis of magnetic metal–organic framework composites, Fe3O4-NH2@MOF-235, for the magnetic solid-phase extraction of benzoylurea insecticides from honey, fruit juice and tap water samples [J]. New Journal of Chemistry, 2019, 43(32): 12563-12569. doi: 10.1039/C9NJ01988J [61] JIA Y, ZHANG Y, XU J, et al. A high-performance “sweeper” for toxic cationic herbicides: An anionic metal–organic framework with a tetrapodal cage [J]. Chemical Communications, 2015, 51(98): 17439-17442. doi: 10.1039/C5CC07249B [62] HASAN Z, CHOI E, JHUNG S H. Adsorption of naproxen and clofibric acid over a metal–organic framework MIL-101 functionalized with acidic and basic groups [J]. Chemical Engineering Journal, 2013, 219: 537-544. doi: 10.1016/j.cej.2013.01.002 [63] ABDELHAMEED R M, ABDEL-GAWAD H, ELSHAHAT M, et al. Cu-BTC@cotton composite: design and removal of ethion insecticide from water [J]. RSC Advances, 2016, 6(48): 42324-42333. doi: 10.1039/C6RA04719J [64] JAMALI A, SHEMIRANI F, MORSALI A. A comparative study of adsorption and removal of organophosphorus insecticides from aqueous solution by Zr-based MOFs [J]. Journal of Industrial and Engineering Chemistry, 2019, 80: 83-92. doi: 10.1016/j.jiec.2019.07.034 [65] BHADEA B N, CHO K H, KHAN N A, et al. Liquid-Phase adsorption of aromatics over a metal-organic framework and activated carbon: effects of hydrophobicity/hydrophilicity of adsorbents and solvent polarity [J]. The Journal of Physical Chemistry C, 2015, 119(47): 26620-26627. doi: 10.1021/acs.jpcc.5b09298 [66] JIANG J, YANG C, YAN X. Zeolitic Imidazolate Framework-8 for Fast Adsorption and Removal of Benzotriazoles from Aqueous Solution [J]. ACS Applied Materials & Interfaces, 2013, 5(19): 9837-9842. [67] AZHAR M R, ABID H R, SUN H, et al. Excellent performance of copper-based metal organic framework in adsorptive removal of toxic sulfonamide antibiotics from wastewater [J]. Journal of Colloid and Interface Science, 2016, 478: 344-352. doi: 10.1016/j.jcis.2016.06.032 [68] WANG X, MA X, HUANG P, et al. Magnetic Cu-MOFs embedded within graphene oxide nanocomposites for enhanced preconcentration of benzenoid-containing insecticides [J]. Talanta, 2018, 181: 112-117. doi: 10.1016/j.talanta.2018.01.004 [69] XU Z, WEN Y, TIAN L, et al. Efficient and selective adsorption of nitroaromatic explosives by Zr-MOF [J]. Inorganic Chemistry Communications, 2017, 77: 11-13. doi: 10.1016/j.inoche.2017.01.025 [70] HASAN Z, JEON J, JHUNG S H. Adsorptive removal of naproxen and clofibric acid from water using metal-organic frameworks [J]. Journal of Hazardous Materials, 2012, 209-210: 151-157. doi: 10.1016/j.jhazmat.2012.01.005 [71] WANG H, YUAN X, WU Y, et al. In situ synthesis of In2S3@MIL-125(Ti) core-shell microparticle for the removal of tetracycline from wastewater by integrated adsorption and visible-light-driven photocatalysis [J]. Applied Catalysis B:Environmental, 2016, 186: 19-29. doi: 10.1016/j.apcatb.2015.12.041 [72] LI N, ZHOU L, JIN X, et al. Simultaneous removal of tetracycline and oxytetracycline antibiotics from wastewater using a ZIF-8 metal organic-framework [J]. Journal of Hazardous Materials, 2019, 366: 563-572. doi: 10.1016/j.jhazmat.2018.12.047 [73] KHAN N A, JUNG B K, HASAN Z, et al. Adsorption and removal of phthalic acid and diethyl phthalate from water with zeolitic imidazolate and metal-organic frameworks [J]. Journal of Hazardous Materials, 2015, 282: 194-200. doi: 10.1016/j.jhazmat.2014.03.047 [74] ABDWLHAMEED R M, TAHA M, ABDEL-GAWAD H, et al. Zeolitic imidazolate frameworks: Experimental and molecular simulation studies for efficient capture of pesticides from wastewater [J]. Journal of Environmental Chemical Engineering, 2019, 7(6): 103499. doi: 10.1016/j.jece.2019.103499 [75] WANG B, LV X, FENG D, et al. Highly stable Zr(IV)-based metal-organic frameworks for the detection and removal of antibiotics and organic explosives in water [J]. Journal of the American Chemical Society, 2016, 138(19): 6204-6216. doi: 10.1021/jacs.6b01663 [76] SONG J Y, JHUNG S H. Adsorption of pharmaceuticals and personal care products over metal-organic frameworks functionalized with hydroxyl groups: Quantitative analyses of H-bonding in adsorption [J]. Chemical Engineering Journal, 2017, 322: 366-374. doi: 10.1016/j.cej.2017.04.036 [77] PAN Y, LI Z, ZHANG Z, et al. Adsorptive removal of phenol from aqueous solution with zeolitic imidazolate framework-67 [J]. Journal of Environmental Management, 2016, 169: 167-173. [78] LIU K, ZHANG S, HU X, et al. Understanding the adsorption of PFOA on MIL-101(Cr)-Based Anionic-Exchange Metal–Organic Frameworks: Comparing DFT Calculations with Aqueous Sorption Experiments [J]. Environmental Science & Technology, 2015, 49(14): 8657-8665. [79] SARKER M, BHADRA B N, SEO P W, et al. Adsorption of benzotriazole and benzimidazole from water over a Co-based metal azolate framework MAF-5(Co) [J]. Journal of Hazardous Materials, 2017, 324: 131-138. doi: 10.1016/j.jhazmat.2016.10.042 [80] JUN J W, TONG M, JUNG B K, et al. Effect of central metal ions of analogous metal-organic frameworks on adsorption of organoarsenic compounds from water: Plausible mechanism of adsorption and water purification [J]. Chemistry - A European Journal, 2015, 21(1): 347-354. doi: 10.1002/chem.201404658 [81] SEO Y S, KHAN N A, JHUNG S H. Adsorptive removal of methylchlorophenoxypropionic acid from water with a metal-organic framework [J]. Chemical Engineering Journal, 2015, 270: 22-27. doi: 10.1016/j.cej.2015.02.007 [82] ARIS A Z, MOHD HIR A, RAZAK M R. Metal-organic frameworks (MOFs) for the adsorptive removal of selected endocrine disrupting compounds (EDCs) from aqueous solution: A review [J]. Applied Materials Today, 2020, 21: 100796. doi: 10.1016/j.apmt.2020.100796 [83] LI J, WANG X, ZHAO G, et al. Metal-organic framework-based materials: superior adsorbents for the capture of toxic and radioactive metal ions [J]. Chemical Society Reviews, 2018, 47(7): 2322-2356. doi: 10.1039/C7CS00543A [84] WANG Y, ZHAO W, QI Z, et al. Designing ZIF-8/hydroxylated MWCNT nanocomposites for phosphate adsorption from water: Capability and mechanism [J]. Chemical Engineering Journal, 2020, 394: 124992. doi: 10.1016/j.cej.2020.124992 [85] GUO Y, JIN H, QI Z, et al. Carbonized-MOF as a sulfur host for aluminums Sulfur batteries with enhanced capacity and cycling life [J]. Advanced Functional Materials, 2019, 29(7): 1807676. [86] PANG Y, ZANG X, LI H, et al. Solid-phase microextraction of organophosphorus pesticides from food samples with a nitrogen-doped porous carbon derived from g-C3N4 templated MOF as the fiber coating [J]. Journal of Hazardous Materials, 2020, 384: 121430. doi: 10.1016/j.jhazmat.2019.121430 [87] LIU X, WANG C, WANG Z, et al. Nanoporous carbon derived from a metal organic framework as a new kind of adsorbent for dispersive solid phase extraction of benzoylurea insecticides [J]. Microchemical Acta, 2015, 182(11-12): 1903-1910. doi: 10.1007/s00604-015-1530-8 [88] ABDELILLAH A E E, ŞAHIN S, BAYAZIT Ş S. Preparation of CeO2 nanofibers derived from Ce-BTC metal-organic frameworks and its application on pesticide adsorption [J]. Journal of Molecular Liquids, 2018, 255: 10-17. doi: 10.1016/j.molliq.2018.01.165 [89] YU J, MU C, YAN B, et al. Nanoparticle/MOF composites: Preparations and applications [J]. Materials Horizons, 2017, 4(4): 557-569. doi: 10.1039/C6MH00586A [90] YANG Q, WANG J, ZHANG W, et al. Interface engineering of metal organic framework on graphene oxide with enhanced adsorption capacity for organophosphorus pesticide [J]. Chemical Engineering Journal, 2017, 313: 19-26. doi: 10.1016/j.cej.2016.12.041 [91] LIU G, HUANG X, LU M, et al. Facile synthesis of magnetic zinc metal-organic framework for extraction of N-containing heterocyclic fungicides from lettuce vegetable samples [J]. Journal of Separation Science, 2019, 42(7): 1451-1458. doi: 10.1002/jssc.201801169 [92] LIU G, LI L, GAO Y, et al. A beta-cyclodextrin-functionalized magnetic metal organic framework for efficient extraction and determination of prochloraz and triazole fungicides in vegetables samples [J]. Ecotoxicology and Environmental Safety, 2019, 183: 109546. doi: 10.1016/j.ecoenv.2019.109546 [93] YANG Q, ZHAO Q, REN S, et al. Assembly of Zr-MOF crystals onto magnetic beads as a highly adsorbent for recycling nitrophenol [J]. Chemical Engineering Journal, 2017, 323: 74-83. doi: 10.1016/j.cej.2017.04.091 [94] JIANG Y, MA P, PIAO H, et al. Solid-phase microextraction of triazine herbicides via cellulose paper coated with a metal-organic framework of type MIL-101(Cr), and their quantitation by HPLC-MS [J]. Microchimica Acta, 2019, 186(11): 1-8. [95] GANGU K K, MADDILA S, MUKKAMALA S B, et al. Characteristics of MOF, MWCNT and graphene containing materials for hydrogen storage: A review [J]. Journal of Energy Chemistry, 2019, 30: 132-144. doi: 10.1016/j.jechem.2018.04.012 [96] LIU G, LI L, HUANG X, et al. Adsorption and removal of organophosphorus pesticides from environmental water and soil samples by using magnetic multi-walled carbon nanotubes@organic framework ZIF-8 [J]. Journal of Materials Science, 2018, 53(15): 10772-10783. doi: 10.1007/s10853-018-2352-y [97] NIU M, LI Z, HE W, et al. Attapulgite modified magnetic metal-organic frameworks for magnetic solid phase extraction and determinations of benzoylurea insecticides in tea infusions [J]. Food Chemistry, 2020, 317: 126425-126425. doi: 10.1016/j.foodchem.2020.126425 [98] ZHANG R, WANG Z, ZHOU Z, et al. Highly effective removal of pharmaceutical compounds from aqueous solution by magnetic Zr-Based MOFs composites [J]. Industrial & Engineering Chemistry Research, 2019, 58(9): 3876-3884. [99] SEO P W, AHMED I, JHUNG S H. Adsorptive removal of nitrogen-containing compounds from a model fuel using a metal–organic framework having a free carboxylic acid group [J]. Chemical Engineering Journal, 2016, 299: 236-243. doi: 10.1016/j.cej.2016.04.060 [100] AHMED I, KHAN N A, JHUNG S H. Adsorptive denitrogenation of model fuel by functionalized UiO-66 with acidic and basic moieties [J]. Chemical Engineering Journal, 2017, 321: 40-47. doi: 10.1016/j.cej.2017.03.093 [101] SHIN S, SARKER M, LEE H, et al. Metal-organic framework with various functional groups: Remarkable adsorbent for removal of both neutral indole and basic quinoline from liquid fuel [J]. Chemical Engineering Journal, 2019, 370: 1467-1473. doi: 10.1016/j.cej.2019.03.290 [102] LV Y, ZHANG R, ZENG S, et al. Removal of p-arsanilic acid by an amino-functionalized indium-based metal–organic framework: Adsorption behavior and synergetic mechanism [J]. Chemical Engineering Journal, 2018, 339: 359-368. doi: 10.1016/j.cej.2018.01.139 [103] LIU B, YANG F, ZOU Y, et al. Adsorption of phenol and p-nitrophenol from aqueous solutions on metal-organic frameworks: Effect of hydrogen bonding [J]. Journal of Chemical & Engineering Data, 2014, 59(5): 1476-1482. [104] AKPINAR I, DROUT R J, ISLAMOGLU T, et al. Exploiting π–π interactions to design an efficient sorbent for atrazine removal from water [J]. ACS Applied Materials & Interfaces, 2019, 11(6): 6097-6103. [105] SILVA B C E , IRIKURA K , REGINA C G F, et al. Effect of Cu(BDC-NH2) MOF deposited on Cu/Cu2O electrode and its better performance in photoelectrocatalytic reduction of CO2 [J]. Journal of Electroanalytical Chemistry, 2020, 880: 114856. doi: 10.1016/j.jelechem.2020.114856 [106] CAI Z, BIEN C E, LIU Q, et al. Insights into CO2 adsorption in M-OH functionalized MOFs [J]. Chemistry of materials, 2020, 32(10): 4257-4264. doi: 10.1021/acs.chemmater.0c00746 [107] ZHANG X, WANG J, DONG X X, et al. Functionalized metal-organic frameworks for photocatalytic degradation of organic pollutants in environment [J]. Chemosphere, 2020, 242(Mar.): 125144.1-125144.15. [108] MALLICK A, EL-ZOHRY A M, SHEKHAH O, et al. Unprecedented ultralow detection limit of amines using a Thiadiazole-Functionalized Zr(Ⅳ)-Based metal-organic framework [J]. Journal of the American Chemical Society, 2019, 141(18): 7245-7249. doi: 10.1021/jacs.9b01839 [109] CUI Y, ZHU F, CHEN B, et al. Metal-organic frameworks for luminescence thermometry [J]. Chem Commun (Camb), 2015, 51(35): 7420-7431. doi: 10.1039/C5CC00718F [110] LUSTUG W, MUKHERJEE S, RUDD N, et al. Metal-organic frameworks: Functional luminescent and photonic materials for sensing applications [J]. Chemical Society Reviews, 2017, 46(11): 3242-3285. doi: 10.1039/C6CS00930A [111] HU Z, TAN K, LUSTIG W P, et al. Effective sensing of RDX via instant and selective detection of ketone vapors [J]. Chemical Science (Cambridge), 2014, 5(12): 4873-4877. [112] ZHU X, ZHANG K, WANG Y, et al. Fluorescent metal-organic framework (MOF) as a highly sensitive and quickly responsive chemical sensor for the detection of antibiotics in simulated wastewater [J]. Inorganic Chemistry, 2018, 57(3): 1060-1065. doi: 10.1021/acs.inorgchem.7b02471 [113] HAN M, WEN G, DONG W, et al. A heterometallic sodium–europium-cluster-based metal–organic framework as a versatile and water-stable chemosensor for antibiotics and explosives [J]. Journal of Materials Chemistry C, Materials for Optical and Electronic Devices, 2017, 5(33): 8469-8474. doi: 10.1039/C7TC02885G [114] ZHOU Y, YANG Q, ZHANG D, et al. Detection and removal of antibiotic tetracycline in water with a highly stable luminescent MOF [J]. Sensors and Actuators B:Chemical, 2018, 262: 137-143. doi: 10.1016/j.snb.2018.01.218 [115] ZHANG F, YAO H, CHU T, et al. A lanthanide MOF thin-film fixed with Co3O4 nano-anchors as a highly efficient luminescent sensor for nitrofuran antibiotics [J]. Chemistry, 2017, 23(43): 10293-10300. doi: 10.1002/chem.201701852 [116] HE K, LI Z, WANG L, et al. A water-stable luminescent metal-organic framework for rapid and visible sensing of organophosphorus pesticides [J]. ACS Applied Materials & Interfaces, 2019, 11(29): 26250-26260. [117] SINGHA D K, MAJEE P, MONDAL S K, et al. Detection of pesticide using the large stokes shift of luminescence of a mixed lanthanide co-doped metal–organic framework [J]. Polyhedron, 2019, 158: 277-282. doi: 10.1016/j.poly.2018.10.066 [118] LAN A, LI K, WU H, et al. A luminescent microporous metal–organic framework for the fast and reversible detection of high explosives [J]. Angewandte Chemie International Edition, 2009, 48(13): 2334-2338. doi: 10.1002/anie.200804853 [119] WANG X S, LI L, YUAN D Q, et al. Fast highly selective and sensitive anionic metal-organic framework with nitrogen-rich sites fluorescent chemosensor for nitro explosives detection [J]. Journal of Hazardous Materials, 2018, 344: 283-290. doi: 10.1016/j.jhazmat.2017.10.027 [120] WENG H, Yan B. A flexible Tb (Ⅲ) functionalized cadmium metal organic framework as fluorescent probe for highly selectively sensing ions and organic small molecules [J]. Sensors and Actuators B:Chemical, 2016, 228: 702-708. doi: 10.1016/j.snb.2016.01.101 [121] JI G, LIU J, GAO X, et al. A luminescent lanthanide MOF for selectively and ultra-high sensitively detecting Pb2+ ions in aqueous solution [J]. Journal of Materials Chemistry A, 2017, 5(21): 10200-10205. doi: 10.1039/C7TA02439H [122] WANG B, WANG P, XIE L H, et al. A stable zirconium-based metal-organic framework for specific recognition of representative polychlorinated dibenzo-p-dioxin molecules [J]. Nature Communications, 2019, 10(1): 1-8. doi: 10.1038/s41467-018-07882-8 [123] XING S, BING Q, QI H, et al. Rational design and functionalization of a zinc metal-organic framework for highly selective detection of 2, 4, 6-Trinitrophenol [J]. ACS Appl Mater Interfaces, 2017, 9(28): 23828-23835. doi: 10.1021/acsami.7b06482 [124] YANG Q, WANG J, CHEN X, et al. The simultaneous detection and removal of organophosphorus pesticides by a novel Zr-MOF based smart adsorbent [J]. Journal of Materials Chemistry A, 2018, 6(5): 2184-2192. doi: 10.1039/C7TA08399H