-
重金属在环境中是一般不能被降解的,采矿、冶金、机械制造、化工、电子等行业的重金属废水,若不经处理直接排入环境中,会对生态环境和人体健康造成重大危害,重金属污染已成为全球性重大环境问题之一[1-4]. 锌、铜、锰和镍等重金属虽是人体必需微量元素,但此类重金属在体内长时间累积也可能引起心血管、肺、神经和内分泌等多方面问题 [4-6]. 汞(Hg)、镉(Cd)、铅(Pb)、铬(Cr)和砷(As)等非生命活动所必需的“五毒”重金属,对人、动植物和微生物更是具有显著毒性[4-7]. 人们长期饮用含砷(As)地下水,会引发皮肤癌、黑脚病及其他神经系统疾病(如孟加拉国砷污染事件)[4-6];饮用铅(Pb)离子超标的水,会导致人身器官损害、痴呆、骨萎缩等疾病(如血铅事件)[7]等;镉在体内蓄积,会造成肾损伤,进而导致骨软化症(日本著名的公害病──痛痛病)[8-12];汞金属进入人体内,会导致汞中毒,如20世纪50年代,日本九州水俣湾发生的“水俣病”事件 [11-15]. 据不完全估计,全世界平均每年向环境排放重金属达千万吨:Cu约340万吨,Pb约500万吨,Ni约100万吨等[16]. 重金属污染的水体和土壤环境修复已成为当前环境保护领域的重点、热点和难点问题.
纳米零价铁(nano scale zero valent iron,nZVI)是最早用于环境治理的纳米材料之一,其原材料来源丰富、反应产物环境友好,适用于水体中重金属的治理与修复. nZVI去除水中重金属的研究开始于2000年,科学家们以聚合树脂、硅胶等作为载体,制备了粒径在10—30 nm的负载型铁纳米材料,并应用于水溶液中Cr(Ⅵ)和Pb(Ⅱ)的固定和修复,实验证明具有良好的修复效果[17]. 此后,韩国科学家在2005年报道了nZVI异位处理地下水中的As污染,结果表明nZVI对水体中砷的去除率可达95%以上 [18]. 2006年用nZVI去除水溶液中镍离子的研究表明,每克铁对于镍的去除容量达到0.13 g Ni·g−1 Fe,吸附容量比所有的吸附材料都高[19]. 此后,有关nZVI去除重金属的研究层出不穷 [20-30]. 至今,已有多篇文献报道了nZVI用于土壤及地下水卤代有机污染的原位修复研究 [31-38],但尚未有关于重金属污染土壤、地下水的实际场地修复的报道.
2014年,本研究团队首次进行了nZVI技术处理含重金属工业废水的中试研究[39],针对我国水体重金属污染控制现实需求,在nZVI处理工业废水(特别是重金属工业废水)工艺、过程及机理上进行创新型拓展,为纳米材料对含重金属工业废水的有效处置提供了解决方案. 本文重点总结了nZVI技术在工业含重金属废水处理中的原理、技术和最新进展,为本领域的研究者提供参考.
纳米零价铁处理含重金属工业废水研究进展
Advance of heavy metal-loading industrial wastewater treatment with nanoscale zero-valent iron
-
摘要: 纳米零价铁材料(nanoscale zero-valent iron, nZVI)是环境领域应用最广泛的纳米材料之一, 因其原材料来源丰富、反应产物环境友好,在分离/固定水中重金属方面得到了广泛的研究. 实验室研究表明,nZVI能够有效去除复杂实际废水中铜、砷、铅、锌、金等多种重金属,表现出较高的去除负荷. 本研究团队在国内首先研究以nZVI技术为核心,开发分离、固定重金属工业废水中重金属的针对性废水处理工艺. 构建了废水处理“反应-分离-回用”式纳米零价铁反应器(nano iron reactor, NIR)装置,通过“小试—中试—工程应用”逐级科学放大,将其应用于多种重金属工业废水的处理当中. 本文总结了纳米零价铁废水处理工艺,综述了NIR反应器技术处理典型重金属废水的中试和工程应用案例,为nZVI的实际环境应用以及重金属废水处理提供了理论及技术借鉴.Abstract: Nanoscale zero-valent iron (nZVI) is one of the most widely used nanomaterials for environmental remediation. The iron-based materials are easy to obtain, as well as the final products are environmental friendly, so nZVI has been widely studied in the field of separation and stabilization of heavy metal from wastewater. Our research group firstly designed the nano iron reactor (NIR) for heavy metals containing wastewater treatment focused on “reaction, separation and reuse” process. Key factors influencing the removal capacity has been investigated for the treatment of heavy metals containing wastewater using NIR. The technology of nZVI reactor for wastewater treatment has been invented after it has been studied in the scale of laboratory, pilot and large scale engineering application. It was proved that nZVI could effectively and simultaneously remove multiple heavy metal such as Cu, As, Pb, Zn from industrial wastewater, showing a high removal capacity. In general, this paper summarized the advance of wastewater treatment with nZVI, and focus on the pilot- and full- scale application of the treatment of wastewater containing multiple heavy metal. The article can provide the theoretical fundamentals and engineering experience for the environmental application of nZVI and the treatment of heavy metal wastewater.
-
Key words:
- nanoscale zerovalent iron /
- heavy metals /
- wastewater treatment /
- reactor /
- pilot study /
- full-scale application
-
图 6 (A)石灰与纳米零价铁处理含铅含锌废水中试规模装置,(B) 纳米零价铁处理含铅含锌废水中试运行情况:Pb(Ⅱ)、Zn(Ⅱ)含量变化,(C)pH 变化[66].
Figure 6. (A) Pilot-scale NIR for treatment of wastewater containing lead and zinc with nZVI and lime [51],(B)Pilot performance of nZVI reactor for Pb(Ⅱ) and Zn(Ⅱ) wastewater treatment : changes of Pb(Ⅱ) and Zn(Ⅱ) concentrations,(C) Changes in solution pH[66]
指标
Index线路板废水中试
Pilot study of printed circulate board wastewater冶炼废水中试
Pilot study of smelting wastewaterwastewater制酸废水中试
Pilot study of acid-making wasterwater冶炼废水工程
Full-scale study of smelting wasterwaterpH 2.0—6.5 4.5—6.1 1.8—3 5.9—7.3 Eh /mV 240—610 450—590 380—440 310—530 主要重金属及其
浓度范围/(mg·L−1)Cu(8—234)
Ni(0.1—16.9)As(400—1020)
Cu(12—115)
Zn(3.3—22.7)
Ni(5.6—20)Pb(44—2580)
Zn(60—320)
Cd(17—280)
Cu(1—175)As(14—415)
Cu(11—488)
Ni(<6.5)
Zn(<4.3)
Pb(<3.8)其他特征 磷,SS 高盐度(8%) 强酸性 高盐度(15%) 高氨氮(0.6%) COD(3900 mg·L-1) -
[1] HARARI Y N. Sapiens: A Brief History of Humankind[J]. New York: Harper Perennial, 2014. [2] BANG S, CHOI J W, CHO K, et al. Simultaneous reduction of copper and toxicity in semiconductor wastewater using protonated alginate beads [J]. Chemical Engineering Journal, 2016, 288: 525-531. doi: 10.1016/j.cej.2015.12.025 [3] VIKRANT K, KUMAR V, VELLINGIRI K, et al. Nanomaterials for the abatement of cadmium (II) ions from water/wastewater [J]. Nano Research, 2019, 12(7): 1489-1507. doi: 10.1007/s12274-019-2309-8 [4] HUGHES M F. Arsenic toxicity and potential mechanisms of action [J]. Toxicology Letters, 2002, 133(1): 1-16. doi: 10.1016/S0378-4274(02)00084-X [5] FENDORF S, MICHAEL H A, van GEEN A. Spatial and temporal variations of groundwater arsenic in South and Southeast Asia [J]. Science, 2010, 328(5982): 1123-1127. doi: 10.1126/science.1172974 [6] ZHENG Y. Global solutions to a silent poison [J]. Science, 2020, 368(6493): 818-819. doi: 10.1126/science.abb9746 [7] LARSON C. China gets serious about its pollutant-laden soil [J]. Science, 2014, 343(6178): 1415-1416. doi: 10.1126/science.343.6178.1415 [8] FU F L, WANG Q. Removal of heavy metal ions from wastewaters: A review [J]. Journal of Environmental Management, 2011, 92(3): 407-418. doi: 10.1016/j.jenvman.2010.11.011 [9] KURNIAWAN T A, CHAN G Y S, LO W H, et al. Physico-chemical treatment techniques for wastewater laden with heavy metals [J]. Chemical Engineering Journal, 2006, 118(1/2): 83-98. [10] SATARUG S. Long-term exposure to cadmium in food and cigarette smoke, liver effects and hepatocellular carcinoma [J]. Current Drug Metabolism, 2012, 13(3): 257-271. doi: 10.2174/138920012799320446 [11] KUMAR R, CHAWLA J. Removal of cadmium ion from water/wastewater by nano-metal oxides: A review [J]. Water Quality, Exposure and Health, 2014, 5(4): 215-226. doi: 10.1007/s12403-013-0100-8 [12] KUMAR R, CHAWLA J, KAUR I. Removal of cadmium ion from wastewater by carbon-based nanosorbents: A review [J]. Journal of Water and Health, 2015, 13(1): 18-33. doi: 10.2166/wh.2014.024 [13] van GESTEL C A M, KOOLHAAS J E. Water-extractability, free ion activity, and pH explain cadmium sorption and toxicity to Folsomia candida (Collembola) in seven soil-pH combinations [J]. Environmental Toxicology and Chemistry, 2004, 23(8): 1822-1833. doi: 10.1897/03-393 [14] HARADA M. Minamata disease: Methylmercury poisoning in Japan caused by environmental pollution [J]. Critical Reviews in Toxicology, 1995, 25(1): 1-24. doi: 10.3109/10408449509089885 [15] SINGH O V, LABANA S, PANDEY G, et al. Phytoremediation: an overview of metallic ion decontamination from soil [J]. Applied Microbiology and Biotechnology, 2003, 61(5/6): 405-412. [16] 刘金燕, 刘立华, 薛建荣, 等. 重金属废水吸附处理的研究进展 [J]. 环境化学, 2018, 37(9): 2016-2024. doi: 10.7524/j.issn.0254-6108.2017110105 LIU J Y, LIU L H, XUE J R, et al. Research progress on treatment of heavy metal wastewater by adsorption [J]. Environmental Chemistry, 2018, 37(9): 2016-2024(in Chinese). doi: 10.7524/j.issn.0254-6108.2017110105
[17] KURNIAWAN T A, CHAN G Y S, LO W H, et al. Comparisons of low-cost adsorbents for treating wastewaters laden with heavy metals [J]. Science of the Total Environment, 2006, 366(2/3): 409-426. [18] PONDER S M, DARAB J G, MALLOUK T E. Remediation of Cr(Ⅵ) and Pb(Ⅱ) aqueous solutions using supported, nanoscale zero-valent iron [J]. Environmental Science & Technology, 2000, 34(12): 2564-2569. [19] KANEL S R, MANNING B, CHARLET L, et al. Removal of arsenic (Ⅲ) from groundwater by nanoscale zero-valent iron [J]. Environmental Science & Technology, 2005, 39(5): 1291-1298. [20] LI X Q, ZHANG W X. Iron nanoparticles: The core-shell structure and unique properties for Ni(Ⅱ) sequestration [J]. Langmuir, 2006, 22(10): 4638-4642. doi: 10.1021/la060057k [21] LIU A R, WANG W, LIU J, et al. Nanoencapsulation of arsenate with nanoscale zero-valent iron (nZVI): A 3D perspective [J]. Science Bulletin, 2018, 63(24): 1641-1648. doi: 10.1016/j.scib.2018.12.002 [22] LING L, ZHANG W X. Visualizing arsenate reactions and encapsulation in a single zero-valent iron nanoparticle [J]. Environmental Science & Technology, 2017, 51(4): 2288-2294. [23] TANG L, FENG H P, TANG J, et al. Treatment of arsenic in acid wastewater and river sediment by Fe@Fe2O3 nanobunches: The effect of environmental conditions and reaction mechanism [J]. Water Research, 2017, 117: 175-186. doi: 10.1016/j.watres.2017.03.059 [24] LING L, ZHANG W X. Enrichment and encapsulation of uranium with iron nanoparticle [J]. Journal of the American Chemical Society, 2015, 137(8): 2788-2791. doi: 10.1021/ja510488r [25] MU Y, AI Z H, ZHANG L Z, et al. Insight into core–shell dependent anoxic Cr(Ⅵ) removal with Fe@Fe2O3 nanowires: Indispensable role of surface bound Fe(Ⅱ) [J]. ACS Applied Materials & Interfaces, 2015, 7(3): 1997-2005. [26] SHI L N, ZHANG X, CHEN Z L. Removal of Chromium (Ⅵ) from wastewater using bentonite-supported nanoscale zero-valent iron [J]. Water Research, 2011, 45(2): 886-892. doi: 10.1016/j.watres.2010.09.025 [27] ZHANG Y L, SU Y M, ZHOU X F, et al. A new insight on the core-shell structure of zerovalent iron nanoparticles and its application for Pb(II) sequestration [J]. Journal of Hazardous Materials, 2013, 263: 685-693. doi: 10.1016/j.jhazmat.2013.10.031 [28] PONDER S M, DARAB J G, BUCHER J, et al. Surface chemistry and electrochemistry of supported zerovalent iron nanoparticles in the remediation of aqueous metal contaminants [J]. Chemistry of Materials, 2001, 13(2): 479-486. doi: 10.1021/cm000288r [29] HUANG Q, GU T H, LIU A R, et al. Probing pollutant reactions at the iron surface: A case study on selenite reactions with nanoscale zero-valent iron [J]. Environmental Science:Nano, 2021, 8(9): 2650-2659. doi: 10.1039/D1EN00458A [30] YAN W L, RAMOS M A V, KOEL B E, et al. Multi-tiered distributions of arsenic in iron nanoparticles: Observation of dual redox functionality enabled by a core–shell structure [J]. Chemical Communications, 2010, 46(37): 6995. doi: 10.1039/c0cc02311f [31] FAN D M, ANITORI R P, TEBO B M, et al. Reductive sequestration of pertechnetate ( $ ^{99}{\rm{TcO}}_4^-$ ) by nano zerovalent iron (nZVI) transformed by abiotic sulfide [J]. Environmental Science & Technology, 2013, 47(10): 5302-5310.[32] ELLIOTT D W, ZHANG W X. Field assessment of nanoscale bimetallic particles for groundwater treatment [J]. Environmental Science & Technology, 2001, 35(24): 4922-4926. [33] YAN W L, LIEN H L, KOEL B E, et al. Iron nanoparticles for environmental clean-up: Recent developments and future outlook [J]. Environmental Science. Processes & Impacts, 2013, 15(1): 63-77. [34] WANG C B, ZHANG W X. Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs [J]. Environmental Science & Technology, 1997, 31(7): 2154-2156. [35] 邱心泓, 方战强. 修饰型纳米零价铁降解有机卤化物的研究 [J]. 化学进展, 2021, 22(增刊1): 291-297. QIU X H, FANG Z Q. Degradation of halogenated organic compounds by modified nano zero-valent iron [J]. Progress in Chemistry, 2021, 22(增刊1): 291-297(in Chinese).
[36] ZHANG W X, WANG C B, LIEN H L. Treatment of chlorinated organic contaminants with nanoscale bimetallic particles [J]. Catalysis Today, 1998, 40(4): 387-395. doi: 10.1016/S0920-5861(98)00067-4 [37] XU Y, ZHANG W X. Subcolloidal Fe/Ag particles for reductive dehalogenation of chlorinated benzenes [J]. Industrial & Engineering Chemistry Research, 2000, 39(7): 2238-2244. [38] LIEN H L, ZHANG W X. Nanoscale iron particles for complete reduction of chlorinated ethenes [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2001, 191(1/2): 97-105. [39] LI S L, WANG W, YAN W L, et al. Nanoscale zero-valent iron (nZVI) for the treatment of concentrated Cu(II) wastewater: A field demonstration [J]. Environmental Science. Processes & Impacts, 2014, 16(3): 524-533. [40] LI S L, YAN W L, ZHANG W X. Solvent-free production of nanoscale zero-valent iron (nZVI) with precision milling [J]. Green Chemistry, 2009, 11(10): 1618. doi: 10.1039/b913056j [41] LIU A R, ZHANG W X. Fine structural features of nanoscale zero-valent iron characterized by spherical aberration corrected scanning transmission electron microscopy (Cs-STEM) [J]. The Analyst, 2014, 139(18): 4512-4518. doi: 10.1039/C4AN00679H [42] YAN W L, HERZING A A, KIELY C J, et al. Nanoscale zero-valent iron (nZVI): Aspects of the core-shell structure and reactions with inorganic species in water [J]. Journal of Contaminant Hydrology, 2010, 118(3/4): 96-104. [43] WANG C M, BAER D R, AMONETTE J E, et al. Morphology and oxide shell structure of iron nanoparticles grown by sputter-gas-aggregation[J]. 2007, 18(25): 255603. [44] ANTONY J, QIANG Y, BAER D R, et al. Synthesis and characterization of stable iron–iron oxide core–shell nanoclusters for environmental applications [J]. Journal of Nanoscience and Nanotechnology, 2006, 6(2): 568-572. doi: 10.1166/jnn.2006.925 [45] WANG C M, BAER D R, AMONETTE J E, et al. Morphology and electronic structure of the oxide shell on the surface of iron nanoparticles [J]. Journal of the American Chemical Society, 2009, 131(25): 8824-8832. doi: 10.1021/ja900353f [46] LIU A R, LIU J, ZHANG W X. Transformation and composition evolution of nanoscale zero valent iron (nZVI) synthesized by borohydride reduction in static water [J]. Chemosphere, 2015, 119: 1068-1074. doi: 10.1016/j.chemosphere.2014.09.026 [47] LIU A R, LIU J, PAN B C, et al. Formation of lepidocrocite (γ-FeOOH) from oxidation of nanoscale zero-valent iron (nZVI) in oxygenated water [J]. RSC Adv, 2014, 4(101): 57377-57382. doi: 10.1039/C4RA08988J [48] DONG H R, JIANG Z, DENG J M, et al. Physicochemical transformation of Fe/Ni bimetallic nanoparticles during aging in simulated groundwater and the consequent effect on contaminant removal [J]. Water Research, 2018, 129: 51-57. doi: 10.1016/j.watres.2017.11.002 [49] LIU A R, LIU J, HAN J H, et al. Evolution of nanoscale zero-valent iron (nZVI) in water: Microscopic and spectroscopic evidence on the formation of nano- and micro-structured iron oxides [J]. Journal of Hazardous Materials, 2017, 322: 129-135. doi: 10.1016/j.jhazmat.2015.12.070 [50] MAGALHÃES J M, SILVA J E, CASTRO F P, et al. Physical and chemical characterisation of metal finishing industrial wastes [J]. Journal of Environmental Management, 2005, 75(2): 157-166. [51] 刘静, 刘爱荣, 张伟贤. 纳米零价铁及其在环境介质中氧化后性质演变研究进展 [J]. 环境化学, 2014, 33(4): 576-583. doi: 10.7524/j.issn.0254-6108.2014.04.009 LIU J, LIU A R, ZHANG W X. Review on transformation of oxidized nanoscale zero valent iron in environment media [J]. Environmental Chemistry, 2014, 33(4): 576-583(in Chinese). doi: 10.7524/j.issn.0254-6108.2014.04.009
[52] 刘静, 顾天航, 王伟, 等. 纳米零价铁在水相反应中的表面化学和晶相转化 [J]. 化学学报, 2019, 77(2): 121-129. doi: 10.6023/A18100412 LIU J, GU T H, WANG W, et al. Surface chemistry and phase transformation of nanoscale zero-valent iron(nZVI) in aquatic media [J]. Acta Chimica Sinica, 2019, 77(2): 121-129(in Chinese). doi: 10.6023/A18100412
[53] 黄潇月, 王伟, 凌岚, 等. 纳米零价铁与重金属的反应: “核-壳”结构在重金属去除中的作用 [J]. 化学学报, 2017, 75(6): 529-537. doi: 10.6023/A17020051 HUANG X Y, WANG W, LING L, et al. Heavy metal-nZVI reactions: The core-shell structure and applications for heavy metal treatment [J]. Acta Chimica Sinica, 2017, 75(6): 529-537(in Chinese). doi: 10.6023/A17020051
[54] LI S L, WANG W, LIU Y Y, et al. Zero-valent iron nanoparticles (nZVI) for the treatment of smelting wastewater: A pilot-scale demonstration [J]. Chemical Engineering Journal, 2014, 254: 115-123. doi: 10.1016/j.cej.2014.05.111 [55] WANG W, LI S L, LEI H, et al. Enhanced separation of nanoscale zero-valent iron (nZVI) using polyacrylamide: Performance, characterization and implication [J]. Chemical Engineering Journal, 2015, 260: 616-622. doi: 10.1016/j.cej.2014.09.042 [56] WANG W, HUA Y L, LI S L, et al. Removal of Pb(Ⅱ) and Zn(Ⅱ) using lime and nanoscale zero-valent iron (nZVI): A comparative study [J]. Chemical Engineering Journal, 2016, 304: 79-88. doi: 10.1016/j.cej.2016.06.069 [57] LI S L, WANG W, LIANG F P, et al. Heavy metal removal using nanoscale zero-valent iron (nZVI): Theory and application [J]. Journal of Hazardous Materials, 2017, 322: 163-171. doi: 10.1016/j.jhazmat.2016.01.032 [58] 王伟. 纳米零价铁处理重金属废水应用研究[D]. 上海: 同济大学, 2016. WANG W. Research on the Application of Nanoscale Zero-valent Iron[D]. Shanghai: Tongji University, 2016.
[59] BOULAY N, EDWARDS M. Copper in the urban water cycle [J]. Critical Reviews in Environmental Science and Technology, 2000, 30(3): 297-326. doi: 10.1080/10643380091184192 [60] 国家发展和改革委员会. 中华人民共和国有色金属行业标准: 铜精矿 YS/T 318—2007[S]. 北京: 中国标准出版社, 2007. National Development and Reform Commission of the People's Republic of China. Non-ferrous MetallurgyStandard of the People's Republic of China: Copper concentrate. YS/T 318—2007[S]. Beijing: Standards Press of China, 2007(in Chinese).
[61] MOHAN D, PITTMAN C U Jr. Arsenic removal from water/wastewater using adsorbents—A critical review [J]. Journal of Hazardous Materials, 2007, 142(1/2): 1-53. [62] LIN T F, WU J K. Adsorption of arsenite and arsenate within activated alumina grains: Equilibrium and kinetics [J]. Water Research, 2001, 35(8): 2049-2057. doi: 10.1016/S0043-1354(00)00467-X [63] TAKANASHI H, TANAKA A, NAKAJIMA T, et al. Arsenic removal from groundwater by a newly developed adsorbent [J]. Water Science and Technology, 2004, 50(8): 23-32. doi: 10.2166/wst.2004.0479 [64] PATTANAYAK J, MONDAL K, MATHEW S, et al. A parametric evaluation of the removal of As(Ⅴ) and As(Ⅲ) by carbon-based adsorbents [J]. Carbon, 2000, 38(4): 589-596. doi: 10.1016/S0008-6223(99)00144-X [65] CHUANG C L, FAN M, XU M, et al. Adsorption of arsenic(Ⅴ) by activated carbon prepared from oat hulls [J]. Chemosphere, 2005, 61(4): 478-483. doi: 10.1016/j.chemosphere.2005.03.012 [66] DUTTA P K, RAY A K, SHARMA V K, et al. Adsorption of arsenate and arsenite on titanium dioxide suspensions [J]. Journal of Colloid and Interface Science, 2004, 278(2): 270-275. doi: 10.1016/j.jcis.2004.06.015 [67] PENA M E, KORFIATIS G P, PATEL M, et al. Adsorption of As(Ⅴ) and As(Ⅲ) by nanocrystalline titanium dioxide [J]. Water Research, 2005, 39(11): 2327-2337. doi: 10.1016/j.watres.2005.04.006 [68] DIXIT S, HERING J G. Comparison of arsenic(Ⅴ) and arsenic(Ⅲ) sorption onto iron oxide minerals: Implications for arsenic mobility [J]. Environmental Science & Technology, 2003, 37(18): 4182-4189. [69] LI S L, LI J H, WANG W, et al. Recovery of gold from wastewater using nanoscale zero-valent iron [J]. Environmental Science:Nano, 2019, 6(2): 519-527. doi: 10.1039/C8EN01018H [70] JANA N R, SAU T K, PAL T. Growing small silver particle as redox catalyst [J]. The Journal of Physical Chemistry B, 1999, 103(1): 115-121. doi: 10.1021/jp982731f