-
内分泌干扰物(endocrine disrupting chemicals, EDCs)是继“温室效应”和“臭氧层破坏”之后被世界公认的第三大环境问题[1-2],探究此类物质的去除方法有着重要的科学和现实意义。目前,去除EDCs的方法主要有以下几种:微生物降解法,活性炭吸附法,膜过滤法和光催化降解法[3-4]。与其他几种方法相比,光催化降解法具有成本更低,降解速度更快,降解程度更高等明显优势[5]。作为光催化技术的核心环节,催化剂材料的理化性质直接制约着光催化技术的适用范围和应用效果。在众多被研究的半导体催化剂材料中,TiO2因其廉价、易得、环境友好等优势受到了人们的广泛关注[6-7]。然而,由于TiO2固有的宽带隙特征,其在光催化过程中只能依靠紫外光激发而无法利用可见光,严重限制了其实际应用发展[8]。为了克服这一问题,多种制备和调控策略被尝试,如形貌调控、晶面取向控制、掺杂等[9]。在这其中,构建复合材料的方法被广泛使用。不久前,Dong课题组将CdS引入TiO2体系,成功将催化剂的光响应范围从紫外光区拓展至可见光区,并在可见光照射下实现了对4-氯芬的高效降解[10];Du等将AgInS2引入TiO2体系,构建了AgInS2/TiO2复合型催化剂,其在可见光照射下展现了良好的催化杀菌效果[11]。一系列研究结果表明,构建复合材料是拓宽TiO2光响应范围、获得基于可见光驱动的TiO2基催化材料的有效方法。
相比于常见的过渡金属氧化物和硫化物等无机材料,不含金属的石墨相氮化碳(g-C3N4)因拥有更为低廉的价格、良好的催化活性以及优异的结构稳定性得到了科研工作者更多青睐[12]。近年来,一些TiO2与g-C3N4的复合材料被相继报道,如Li等通过控制退火温度,构筑了一系列g-C3N4-TiO2复合材料,证实其能够在可见光照射下高效分解水中丙烯[13];Huang等将锐钛矿型TiO2沉积在g-C3N4纳米片表面,制备了能够在可见光驱动下快速降解恩诺沙星的复合型催化材料[14]。然而,当前复合材料的制备过程大多使用化学复合方法,如水热、溶剂热、煅烧等[15-17],尽管能够满足复合材料的制备需求,但高能耗以及难以精确控制各组分间的比例的缺点始终存在,这些问题往往会造成能源与原材料的大量浪费,这在注重绿色合成的今天是需要改善的。
本研究采用简便的机械混合处理工艺,将TiO2纳米颗粒与不同质量的g-C3N4进行复合,成功制备了一系列TiO2/g-C3N4复合型材料。利用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线粉末衍射(XRD)以及X射线光电子能谱(XPS)等技术对所合成材料进行了表征。以典型EDCs双酚A(BPA)为污染物分子模型,在最优条件下研究了TiO2/g-C3N4对BPA的可见光降解活性,并分析了催化降解机制。本项研究不仅实现了复合材料制备的低能耗与组分比例的精准合成,而且证实了机械混合法可以得到结构均匀且具有良好稳定性的复合材料。
机械混合法制备TiO2/g-C3N4复合材料及其光催化降解双酚A的性能
Preparation of TiO2/g-C3N4 composite material by mechanical mixing method and study on its photocatalytic degradation performance of bisphenol A
-
摘要: 本工作采用机械混合方法,将TiO2纳米颗粒与不同质量的g-C3N4复合,制备了一系列具有不同g-C3N4含量的TiO2/g-C3N4复合材料。运用X射线粉末衍射(XRD)、X射线光电子能谱(XPS)、拉曼光谱(Raman)、比表面积分析仪(BET)、扫描电镜(SEM)和透射电镜(TEM)对材料的化学组成和形貌特征进行了表征。比较了g-C3N4、TiO2和一系列TiO2/g-C3N4在可见光驱动下对水中双酚A(BPA)的降解效率和矿化能力差异,发现TiO2/g-C3N4的光催化活性显著高于g-C3N4和TiO2,其中以TiO2/g-C3N4-B的光催化活性最高(g-C3N4的投料量为0.08 g)。为了揭示TiO2/g-C3N4良好光催化活性的产生机理,采用紫外可见光谱、稳态和瞬态荧光光谱对催化剂(以TiO2/g-C3N4-B为研究模型)可见光响应能力、带隙结构以及光生载流子分离能力进行了分析。结果证实,通过机械混合方法向TiO2体系引入适量的g-C3N4不仅能够将TiO2的光响应范围拓宽,而且可以提升光生载流子的分离能力并延长载流子存活寿命。此方法构建的复合材料能够在水环境中保持结构和性能的稳定。对降解过程中自由基分布特征的监测表明,降解过程中的主要活性物种为空穴自由基和羟基自由基。Abstract: In this work, a series of TiO2/g-C3N4 composites with different g-C3N4 content were prepared by combining TiO2 nanoparticles with g-C3N4 of different masses through using a mechanical mixing method. The chemical composition and morphological structure of the composites were analyzed by X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy (Raman), Brunauer-Emmett-Teller (BET), scanning electron microscope (SEM) and transmission electron microscope (TEM). Driven by visible light, the differences in degradation efficiency and mineralization ability of bisphenol A (BPA) in water with g-C3N4, TiO2 and a series of TiO2/g-C3N4 were compared. Among them, TiO2/g-C3N4-B has the highest photocatalytic activity (the content of g-C3N4 is 0.08 g). To reveal the generation mechanism of the good photocatalytic activity of TiO2/g-C3N4, UV-visible spectroscopy, steady-state and transient fluorescence spectroscopy were used to analyze the visible light response capability, band gap structure, and photogenerated carrier separation ability of the catalyst (using TiO2/g-C3N4-B as the research model). The results confirmed that the introduction of an appropriate amount of g-C3N4 into the TiO2 system through the mechanical mixing method can not only broaden the photoresponse range of TiO2, but also enhance the separation ability of photogenerated carriers and extend the carrier lifetime. The composite material constructed by this method can maintain the stability of structure and performance in the water environment. The monitoring of the distribution characteristics of radicals shows that the main active species in the degradation process are hole and hydroxyl radicals.
-
Key words:
- mechanical mixing /
- composite materials /
- photocatalytic /
- bisphenol A
-
图 6 (a)不同催化剂对BPA的降解效率比较;(b)TiO2/g-C3N4-B对BPA的矿化效果;(c)TiO2/g-C3N4-B光催化反应前后的IR图;(d)TiO2/g-C3N4-B对BPA的循环催化效果
Figure 6. (a) comparison of different catalyst degradation efficiency of BPA; (b) the mineralization effect of TiO2/g-C3N4-B on BPA; (c)IR spectrum of the sample before and after photocatalytic reaction; (d)cyclic photocatalytic effect of TiO2/g-C3N4-B on BPA
表 1 不同样品的比表面积和孔容量
Table 1. Specific surface area and pore volume of different samples
样品 Samples 比表面积/(m2·g−1) BET 孔容量/(cm3·g−1) Pore volume g-C3N4 105 0.71 TiO2 26 0.06 TiO2/g-C3N4-A 43 0.29 TiO2/g-C3N4-B 64 0.34 TiO2/g-C3N4-C 69 0.37 TiO2/g-C3N4-D 73 0.39 -
[1] DAI R, GUO H, TANG C Y, et al. Hydrophilic selective nanochannels created by metal organic frameworks in nanofiltration membranes enhance rejection of hydrophobic endocrine-disrupting compounds [J]. Environmental Science & Technology, 2019, 53(23): 13776-13783. [2] GRAJALES D M, BERNARDES G J L, VERBEL J O. Urban endocrine disruptors targeting breast cancer proteins [J]. Chemical Research in Toxicology, 2016, 29(2): 150-161. doi: 10.1021/acs.chemrestox.5b00342 [3] WANG Z, SUN P, LI Y, et al. Reactive nitrogen species mediated degradation of estrogenic disrupting chemicals by biochar/monochloramine in buffered water and synthetic hydrolyzed urine [J]. Environmental Science & Technology, 2019, 53(21): 12688-12696. [4] BASILE T, PETRELLA A, PETRELLA M, et al. Review of endocrine-disrupting-compound removal technologies in water and wastewater treatment plants: An EU perspective [J]. Industrial & Engineering Chemistry Research, 2011, 50(14): 8389-8401. [5] 陈紫盈, 孙洁, 罗雪文, 等. BiVO4晶面生长调控及其光催化氧化罗丹明B和还原Cr(Ⅵ)的性能 [J]. 环境化学, 2020, 39(8): 2129-2136. doi: 10.7524/j.issn.0254-6108.2019061101 CHEN Z, SUN J, LUO X, et al. Growth regulation of BiVO4 crystal plane and photocatalytic oxidation of Rhodamine B and reduction of Cr(Ⅵ) [J]. Environmental Chemistry, 2020, 39(8): 2129-2136(in Chinese). doi: 10.7524/j.issn.0254-6108.2019061101
[6] 刘子薇, 胡丽君, 孙振亚, 等. TiO2-FeOOH/Mmt纳米复合材料的表面酸碱性质及光催化性能 [J]. 环境化学, 2020, 39(3): 745-754. doi: 10.7524/j.issn.0254-6108.2019092707 LIU Z, HU L J, SUN Z Y, et al. The surface acidity and basicity and photocatalytic activity of TiO2-FeOOH/Mmt nanocomposites [J]. Environmental Chemistry, 2020, 39(3): 745-754(in Chinese). doi: 10.7524/j.issn.0254-6108.2019092707
[7] ZHOU X, LIU N, SCHMUKI P. Photocatalysis with TiO2 nanotubes: “Colorful” reactivity and designing site-specific photocatalytic centers into TiO2 nanotubes [J]. ACS Catalysis, 2017, 7(5): 3210-3235. doi: 10.1021/acscatal.6b03709 [8] ZHAO Z, SHEN B, HU Z, et al. Recycling of spent alkaline Zn-Mn batteries directly: combination with TiO2 to construct a novel Z-scheme photocatalytic system [J]. Journal of Hazardous Materials, 2020, 400: 123236. doi: 10.1016/j.jhazmat.2020.123236 [9] SCHNEIDER J, MATSUOKA M, TAKEUCHI M, et al. Understanding TiO2 photocatalysis: Mechanisms and materials [J]. Chemical Reviews, 2014, 114(19): 9919-9986. doi: 10.1021/cr5001892 [10] ZHANG J, ZHOU D, DONG S, et al. Respective construction of Type-Ⅱ and direct Z-scheme heterostructure by selectively depositing CdS on {001} and {101} facets of TiO2 nanosheet with C-Dots modification: a comprehensive comparison [J]. Journal of Hazardous Materials, 2019, 366: 311-320. doi: 10.1016/j.jhazmat.2018.12.013 [11] DU J, MA S, LIU H, et al. Uncovering the mechanism of novel AgInS2 nanosheets/TiO2 nanobelts composites for photocatalytic remediation of combined pollution [J]. Applied Catalysis B:Environmental, 2019, 259: 118062. doi: 10.1016/j.apcatb.2019.118062 [12] WANG H, SU Y, ZHAO H, et al. Photocatalytic oxidation of aqueous ammonia using atomic single layer graphitic-C3N4 [J]. Environmental Science & Technology, 2014, 48(20): 11984-11990. [13] LI J, ZHANG M, LI X, et al. Effect of the calcination temperature on the visible light photocatalytic activity of direct contact Z-scheme g-C3N4-TiO2 heterojunction [J]. Applied Catalysis B:Environmental, 2017, 212: 106-114. doi: 10.1016/j.apcatb.2017.04.061 [14] HUANG J, LI D, LI R, et al. One-step synthesis of phosphorus/oxygen co-doped g-C3N4/anatase TiO2 Z-scheme photocatalyst for significantly enhanced visible-light photocatalysis degradation of enrofloxacin [J]. Journal of Hazardous Materials, 2020, 386: 121634. doi: 10.1016/j.jhazmat.2019.121634 [15] XIAO J, HAN Q, XIE Y, et al. Is C3N4 chemically stable toward reactive oxygen species in sunlight-driven water treatment? [J]. Environmental Science & Technology, 2017, 51(22): 13380-13387. [16] CHAN M, CHEN C, LEE I, et al. Near-infrared light-mediated photodynamic therapy nanoplatform by the electrostatic assembly of upconversion nanoparticles with graphitic carbon nitride quantum dots [J]. Inorganic Chemistry, 2016, 55(20): 10267-10227. doi: 10.1021/acs.inorgchem.6b01522 [17] WANG W, NIU Q, ZENG G, et al. 1D porous tubular g-C3N4 capture black phosphorus quantum dots as 1D/0D metal-free photocatalysts for oxytetracycline hydrochloride degradation and hexavalent chromium reduction [J]. Applied Catalysis B:Environmental, 2020, 273(15): 119051. [18] GUO S, ZHEN M, LIU L, et al. Facile preparation and lithium storage properties of TiO2@graphene composite electrodes with low carbon content [J]. Chemistry-A European Journal, 2016, 22(34): 11943-11948. doi: 10.1002/chem.201602532 [19] GUO S, ZHANG X, ZHOU Z, et al. Facile preparation of hierarchical Nb2O5 microspheres with photocatalytic activities and electrochemical properties [J]. Journal of Materials Chemistry A, 2014, 2(24): 9236-9243. doi: 10.1039/C4TA01567C [20] WANG L, GUO S, CHEN Y, et al. A mechanism investigation of how the alloying effect improves the photocatalytic nitrate reduction activity of bismuth oxyhalide nanosheets [J]. ChemPhotoChem, 2020, 4(2): 110-119. doi: 10.1002/cptc.201900217 [21] QIU B, ZHU Q, DU M, et al. Efficient solar light harvesting CdS/Co9S8 hollow cubes for Z-scheme photocatalytic water splitting [J]. Angewandte Chemie-International Edition, 2017, 56(10): 2684-2688. doi: 10.1002/anie.201612551 [22] LI J, ZHANG Z, CUI W, et al. The spatially oriented charge flow and photocatalysis mechanism on internal van der Waals heterostructures enhanced g-C3N4 [J]. ACS Catalysis, 2018, 8(9): 8376-8385. doi: 10.1021/acscatal.8b02459 [23] ZHANG L, YANG C, LV K, et al. SPR effect of bismuth enhanced visible photoreactivity of Bi2WO6 for NO abatement [J]. Chinese Journal of Catalysis, 2019, 40(5): 755-764. doi: 10.1016/S1872-2067(19)63320-6