-
我国铜消费量常年居于世界首位,但国内铜资源相对不足,再生铜成为缓解这一矛盾的有效方式[1-2]。为规范进口再生铜原料的管理,《再生铜原料》(GB/T 38471—2019)在原料类别、表观特征和夹杂物含量比例等方面作了相关描述和限定。与生产等量的原生铜相比,再生铜节约了63%—95%的能源,减少了65%—92%的二氧化碳排放[3]。然而再生铜冶炼过程也可能会产生多氯代二苯并二噁英/呋喃(PCDD/Fs)[4-6],PCDD/Fs对环境和人体健康具有严重的危害[7-9]。再生铜冶炼烟气中产生的PCDD/Fs毒性当量浓度(4.2—38.0 ng·g−1 TEQ)明显高于铜矿冶炼烟气中所产生的PCDD/Fs毒性当量浓度(0.003—1.5 ng·g−1 TEQ)[10],其生成的二噁英浓度高于其他金属冶炼和垃圾焚烧炉所产生的二噁英浓度[11-12],Te等[13]分析了我国30个再生有色金属冶炼厂排放烟气中的二噁英浓度,发现再生铜冶炼烟气中的二噁英浓度最高,有效减少二噁英的产生和排放有助于再生铜冶炼行业的长期发展[14]。二噁英的产生与原料和温度有密切关系[15-16],再生铜原料涂层一般包括油漆、防锈层、绝缘层等,夹杂物一般包括废塑料、废橡胶、金属氧化物、纤维末等,不同工艺及设备的冶炼温度存在差异。结合《再生铜原料》对夹杂物的限定,本文重点研究不同再生铜原料、冶炼温度和夹杂物含量对冶炼烟气中二噁英产生特性的影响,以期为实际再生铜冶炼过程中二噁英的减排提供理论依据和数据支撑。
进口再生铜冶炼烟气中二噁英的生成特性
Formation characteristics of PCDD/Fs in imported secondary copper smelting flue gas
-
摘要:
为研究我国进口再生铜冶炼烟气中二噁英(PCDD/Fs)的生成特性,文章采用管式炉模拟进口再生铜冶炼过程,分别分析了再生铜原料、冶炼温度和夹杂物含量对冶炼烟气中PCDD/Fs浓度、同系物浓度分布、毒性当量浓度分布等产生的影响。结果表明,各原料生成的PCDD/Fs浓度为高含量涂层漆包线(345.02 ng·g−1)远大于低含量涂层漆包线(40.18 ng·g−1)、铜加工材(8.13 ng·g−1)和铜米(2.49 ng·g−1),原料预处理可有效减少PCDD/Fs的产生;不同再生铜原料生成PCDD/Fs同系物的分布具有相似性;六氯代二苯并呋喃(HxCDF)和五氯代二苯并呋喃(PeCDF)为二噁英毒性的主要贡献者。当温度从900 ℃升至1100 ℃时,PCDD/Fs浓度和毒性当量(TEQ)分别减少了59.83%和69.88%;升至1300 ℃时,PCDD/Fs浓度和毒性当量减少了11.59%和1.21%,1100 ℃以上高温可有效降低PCDD/Fs浓度和毒性当量;各实验温度下多氯二苯并二噁英类(PCDDs)的生成浓度均在0.29 ng·g−1以下。随着夹杂物比例从0增加到1%,铜加工材冶炼烟气中PCDD/Fs的浓度和毒性当量浓度分别增加了1.15倍和2.4倍;PCDD/Fs同系物主要以八氯代二苯并呋喃(OCDF)与七氯代二苯并呋喃(HpCDF)为主,其浓度之和占比在86.01%以上。本研究为实际再生铜冶炼烟气中二噁英的减排提供理论依据和数据支撑。
Abstract:To further investigate the generation characteristics of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in the smelting exhaust gas generated from the import secondary copper in China, in this paper, a tubular furnace was used to simulate the smelting proess of imported secondary copper. The effect of raw materials of secondary copper, smelting temperature, and inclusion contention the concentation of PCDD/Fs, homologous concentration distribution and the concentration distribution of toxicity equivalency quantity(TEQ) in smelting flue gas were analyzed, respectively. The results showed that the concentration of PCDD/Fs in the smelting flue gas of secondary copper from different raw materials was as follows: high content coated enamelled wire (337.22 ng·g−1) > low content coated enamelled wire (40.18 ng·g−1) > copper processing material (8.13 ng·g−1) > copper rice (2.49 ng·g−1). The pretreatment of the raw material of secondary copper can effectively reduced the generation of PCDD/Fs. The distribution of PCDD/ Fs homologues produced by secondary copper regeneration with different raw materials is similar. The hexachlorodibenzofuran (HxCDF) and pentachlorodiphenyl Parafuran (PeCDF) were the major contributions to dioxin toxicity. With the temperature increased from 900°C to 1100°C, PCDD/Fs concentration and the TEQ significantly decreased by 59.83% and 69.88%, respectively. At 1300 ℃, PCDD/Fs concentration and the TEQ decreased by 11.59% and 1.21%, respectively. High temperature above 1100 ℃ could effectively reduce PCDD/ Fs concentration and the TEQ. The concentration of the PCDDs was lower than 0.29 ng·g−1 at all experimental temperatures. With the inclusion ratio increasing from 0 to 1%, the concentration of PCDD/Fs and the TEQ in the smelting flue gas of copper processing materials increased by 1.15 times and 2.4 times, respectively. The octachlorodibenzofuran (OCDF) and heptachlorodibenzofuran (HpCDF) were the main PCDD/Fs homologues, and the total accounts of those homologues was higher than 86.01%. This systematic study provides theoretical basis and data support for the emission reduction of dioxins in the flue gas of the actual secondary copper smelting.
-
Key words:
- imported secondary copper /
- simulation research /
- PCDD/Fs /
- temperature /
- inclusion
-
表 1 我国再生铜使用情况及来源
Table 1. Usage and sources of copper waste in China
原料种类
Material type占比/%
Proportion来源或特征
Source or feature铜加工材 72.65 热水器铜管、空调铜管、边角料、导电排等 铜米 12.45 电线电缆破碎后获得 铜线 6.82 电线电缆剥除表面绝缘层或燃烧处理后获得 漆包线 6.52 电机拆解获得,表面有涂层 水洗铜 0.5 紫铜部件经破碎、清洗后获得 铜削 0.16 来源于包覆铜件、电镀铜板、磨削料 铜水箱 0.06 源于汽车水箱、换热器部件 铜水箱(有镀层) 0.53 源于汽车水箱、换热器部件,带有焊接头和镀层 镀白紫铜 0.31 源于电子接插件厂家的加工余料 表 2 不同因素实验设计值
Table 2. experimental design values of different factors
编号
Number样品
Sample温度/℃
Temperature夹杂物比例/%
Percentage of inclusions1 铜加工材 1200 0 2 铜米 1200 0 3 1号漆包线 1200 0 4 2号漆包线 1200 0 5 铜加工材 1200 0.5 6 铜加工材 900 1 7 铜加工材 1100 1 8 铜加工材 1200 1 9 铜加工材 1300 1 表 3 不同原料下PCDD/Fs浓度、PCDFs/PCDDs比值及毒性当量浓度
Table 3. PCDD/Fs concentration, PCDFs/PCDDs ratio and toxic equivalent quantity under different raw materials
参数Characteristics 原料Raw material 铜米
Copper particles铜加工材
Copper processed material1号漆包线
Low content enameled wire2号漆包线
High content enameled wirePCDDs/(ng·g−1) 0.18 0.56 1.74 8.26 PCDFs/(ng·g−1) 2.32 7.57 38.44 336.76 PCDFs/PCDDs 13.24 13.52 22.17 40.75 二噁英总浓度/(ng·g−1) 2.49 8.13 40.18 345.02 二噁英总毒性当量浓度/
(ng·g−1)TEQ0.055 0.060 0.293 3.055 表 4 不同温度下PCDD/Fs的总浓度、PCDFs/PCDDs浓度比及毒性当量浓度
Table 4. Total PCDD/Fs concentration, PCDFs/PCDDs concentration ratio and toxic equivalent quantity concentration at different temperatures
参数Characteristics 温度/℃ Temperature 900 1100 1200 1300 PCDDs/(ng·g−1) 0.21 0.17 0.07 0.29 PCDFs/(ng·g−1) 10.32 4.06 3.51 2.73 PCDFs/PCDDs 49.14 24.62 50.14 9.41 二噁英总浓度/(ng·g−1) 10.53 4.23 3.58 3.01 二噁英总毒性当量浓度/(ng·g−1)TEQ 0.083 0.025 0.019 0.024 表 5 不同比例夹杂物下PCDD/Fs的总浓度、PCDFs/PCDDs浓度比及毒性当量浓度
Table 5. Total PCDD/Fs concentration, PCDFs/PCDDs concentration ratio and toxigenic equivalent quantity concentration under different proportion of inclusions
参数Characteristics 夹杂物比例 Inclusion proportion 0 0.5% 1% PCDDs/(ng·g−1) 0.44 0.67 1.44 PCDFs/(ng·g−1) 6.58 10.66 13.63 PCDFs/PCDDs 14.95 15.91 9.46 二噁英总浓度/(ng·g−1) 7.02 11.33 15.07 二噁英总毒性当量浓度/(ng·g−1)TEQ 0.035 0.095 0.119 -
[1] 李历铨, 郑洋, 李彬, 等. 我国再生铜产业污染排放识别与绿色升级对策 [J]. 有色金属工程, 2018, 8(1): 133-138. doi: 10.3969/j.issn.2095-1744.2018.01.026 LI L Q, ZHENG Y, LI B, et al. The identification of pollution emission for China secondary copper industry and upgrading green countermeasures [J]. Nonferrous Metals Engineering, 2018, 8(1): 133-138(in Chinese). doi: 10.3969/j.issn.2095-1744.2018.01.026
[2] 温宗国, 季晓立. 中国铜资源代谢趋势及减量化措施 [J]. 清华大学学报(自然科学版), 2013, 53(9): 1283-1288. WEN Z G, JI X L. Copper resource trends and use reduction measures in China [J]. Journal of Tsinghua University (Science and Technology), 2013, 53(9): 1283-1288(in Chinese).
[3] HUNG P C, CHANG C C, CHANG S H, et al. Characteristics of PCDD/F emissions from secondary copper smelting industry [J]. Chemosphere, 2015, 118: 148-155. doi: 10.1016/j.chemosphere.2014.07.064 [4] WANG M, LIU G R, JIANG X X, et al. Brominated dioxin and furan stack gas emissions during different stages of the secondary copper smelting process [J]. Atmospheric Pollution Research, 2015, 6(3): 464-468. doi: 10.5094/APR.2015.051 [5] 邹川. 典型行业PCDD/Fs排放特征及其控制研究[D]. 广州: 华南理工大学, 2012. ZOU C. Study on emission characteristics and control of PCDD/fs from typical industries [D]. Guangzhou: South China University of Technology, 2012(in Chinese).
[6] WANG M, LIU G R, JIANG X X, et al. Thermochemical formation of polybrominated dibenzo-p-dioxins and dibenzofurans mediated by secondary copper smelter fly ash, and implications for emission reduction [J]. Environmental Science & Technology, 2016, 50(14): 7470-7479. [7] 宋鹏程, 陆书玉, 魏永杰, 等. 上海市大气颗粒物生物毒性及二噁英呼吸暴露风险评价 [J]. 中国环境科学, 2018, 38(5): 1961-1969. doi: 10.3969/j.issn.1000-6923.2018.05.042 SONG P C, LU S Y, WEI Y J, et al. Biotoxicity effects and respiratory risk assessment of PCDD/Fs exposured to atmospheric particulates in Shanghai [J]. China Environmental Science, 2018, 38(5): 1961-1969(in Chinese). doi: 10.3969/j.issn.1000-6923.2018.05.042
[8] 罗挺, 陈敏慧, 罗云程, 等. 二噁英暴露与6种疾病流行: 越南成年男性的健康研究 [J]. 环境化学, 2019, 38(8): 1669-1675. doi: 10.7524/j.issn.0254-6108.2018093003 LUO T, CHEN M H, LUO Y C, et al. Dioxin exposure and six kind of diseases prevalence: Vietnamese men health study [J]. Environmental Chemistry, 2019, 38(8): 1669-1675(in Chinese). doi: 10.7524/j.issn.0254-6108.2018093003
[9] 李雁, 郭昌胜, 侯嵩, 等. 固体废物焚烧过程中二噁英的排放和生成机理研究进展 [J]. 环境化学, 2019, 38(4): 746-759. doi: 10.7524/j.issn.0254-6108.2018110103 LI Y, GUO C S, HOU S, et al. The formation mechanisms and emission of dioxin during the solid waste incineration process [J]. Environmental Chemistry, 2019, 38(4): 746-759(in Chinese). doi: 10.7524/j.issn.0254-6108.2018110103
[10] NIE Z Q, LIU G R, LIU W B, et al. Characterization and quantification of unintentional POP emissions from primary and secondary copper metallurgical processes in China [J]. Atmospheric Environment, 2012, 57: 109-115. doi: 10.1016/j.atmosenv.2012.04.048 [11] NIE Z Q, ZHENG M H, LIU W B, et al. Estimation and characterization of PCDD/Fs, dl-PCBs, PCNs, HxCBz and PeCBz emissions from magnesium metallurgy facilities in China [J]. Chemosphere, 2011, 85(11): 1707-1712. doi: 10.1016/j.chemosphere.2011.09.016 [12] ZOU C, HAN J L, FU H Q. Emissions of PCDD/fs from steel and secondary nonferrous productions [J]. Procedia Environmental Sciences, 2012, 16: 279-288. doi: 10.1016/j.proenv.2012.10.039 [13] BA T, ZHENG M H, ZHANG B, et al. Estimation and congener-specific characterization of polychlorinated naphthalene emissions from secondary nonferrous metallurgical facilities in China [J]. Environmental Science & Technology, 2010, 44(7): 2441-2446. [14] JIN R, LIU G R, ZHENG M H, et al. Secondary copper smelters as sources of chlorinated and brominated polycyclic aromatic hydrocarbons [J]. Environmental Science & Technology, 2017, 51(14): 7945-7953. [15] LEE C C, SHIH T S, CHEN H L. Distribution of air and serum PCDD/F levels of electric arc furnaces and secondary aluminum and copper smelters [J]. Journal of Hazardous Materials, 2009, 172(2/3): 1351-1356. [16] KUZUHARA S, SATO H, KASAI E, et al. Influence of metallic chlorides on the formation of PCDD/fs during low-temperature oxidation of carbon [J]. Environmental Science & Technology, 2003, 37(11): 2431-2435. [17] WANG M, LIU G R, JIANG X X, et al. Formation and potential mechanisms of polychlorinated dibenzo-p-dioxins and dibenzofurans on fly ash from a secondary copper smelting process [J]. Environmental Science and Pollution Research, 2015, 22(11): 8747-8755. doi: 10.1007/s11356-014-4046-6 [18] 张梦玫, 李晓东, 陈彤. 氯化铜催化二噁英生成实验及指纹特性分析 [J]. 环境科学学报, 2019, 39(8): 2735-2746. ZHANG M M, LI X D, CHEN T. Copper chloride catalyzed PCDD/F-formation: Experiments and PCDD/F-signatures [J]. Acta Scientiae Circumstantiae, 2019, 39(8): 2735-2746(in Chinese).
[19] 罗阿群, 刘少光, 林文松, 等. 二噁英生成机理及减排方法研究进展 [J]. 化工进展, 2016, 35(3): 910-916. LUO A, LIU S G, LIN W S, et al. Progress of formation mechanisms and emission reduction methods of PCDD/Fs [J]. Chemical Industry and Engineering Progress, 2016, 35(3): 910-916(in Chinese).
[20] POTTER P M, GUAN X, LOMNICKI S M. Synergy of iron and copper oxides in the catalytic formation of PCDD/Fs from 2-monochlorophenol [J]. Chemosphere, 2018, 203: 96-103. doi: 10.1016/j.chemosphere.2018.03.118 [21] WANG L C, LEE W J, LEE W S, et al. Effect of chlorine content in feeding wastes of incineration on the emission of polychlorinated dibenzo-p-dioxins/dibenzofurans [J]. The Science of the Total Environment, 2003, 302(1/2/3): 185-198. [22] ZHANG M M, YANG J, BUEKENS A, et al. PCDD/F catalysis by metal chlorides and oxides [J]. Chemosphere, 2016, 159: 536-544. doi: 10.1016/j.chemosphere.2016.06.049 [23] 张玉才, 龙红明, 春铁军, 等. 原料铜和氯元素对二(噁)英排放的影响及抑制技术 [J]. 钢铁, 2015, 50(12): 42-46. ZHANG Y C, LONG H M, CHUN T J, et al. Influences of Cu and Cl elements from raw materials on the emission of PCDD/Fs and its emissionreduction technology [J]. Iron & Steel, 2015, 50(12): 42-46(in Chinese).
[24] TAKAOKA M, SHIONO A, NISHIMURA K, et al. Dynamic change of copper in fly ash during de novo synthesis of dioxins [J]. Environmental Science & Technology, 2005, 39(15): 5878-5884. [25] 卢青. 医疗废物回转窑焚烧线中二恶英的生成 [J]. 环境工程学报, 2013, 7(2): 743-746. LU Q. Formation of dioxin in a rotary kiln medical waste incineration line [J]. Chinese Journal of Environmental Engineering, 2013, 7(2): 743-746(in Chinese).
[26] 唐娜, 李馥琪, 罗伟铿, 等. 废物焚烧及工业金属冶炼烟气中二噁英的排放水平及同系物分布 [J]. 安全与环境学报, 2018, 18(4): 1496-1502. TANG N, LI F Q, LUO W K, et al. Concentrations and congener distributions of PCDD/Fs in the flue gas from combustion and metallurgical processing [J]. Journal of Safety and Environment, 2018, 18(4): 1496-1502(in Chinese).
[27] ISHIKAWA R, BUEKENS A, HUANG H, et al. Influence of combustion conditions on dioxin in an industrial-scale fluidized-bed incinerator: Experimental study and statistical modelling [J]. Chemosphere, 1997, 35(3): 465-477. doi: 10.1016/S0045-6535(97)00112-4 [28] 张明远, 万新. 冶金高炉高温熔融处理垃圾飞灰 [J]. 环境工程学报, 2012, 6(8): 2859-2864. ZHANG M Y, WAN X. High-temperature melting treatment of fly ash by blast furnace [J]. Techniques and Equipment for Environmental Pollution Control, 2012, 6(8): 2859-2864(in Chinese).
[29] 别如山. 垃圾焚烧飞灰旋风炉高温熔融处理技术 [J]. 电站系统工程, 2010, 26(4): 9-10, 12. doi: 10.3969/j.issn.1005-006X.2010.04.004 BIE R S. Cyclone furnace technology disposing fly ash from MSW incineration plant [J]. Power System Engineering, 2010, 26(4): 9-10, 12(in Chinese). doi: 10.3969/j.issn.1005-006X.2010.04.004
[30] 闫鹏. 废弃印刷线路板高温燃烧时溴的迁移转化特性和溴代二噁英的排放特性试验研究[D]. 杭州: 浙江大学, 2013. YAN P. Experimental study on the transformation and conversion characteristics of bromine and PBDD/Fs emission in waste printed circuit boards combustion [D]. Hangzhou: Zhejiang University, 2013(in Chinese).
[31] YAN M, LI X D, CHEN T, et al. Effect of temperature and oxygen on the formation of chlorobenzene as the indicator of PCDD/Fs [J]. Journal of Environmental Sciences, 2010, 22(10): 1637-1642. doi: 10.1016/S1001-0742(09)60300-4 [32] OOI T C, LU L M. Formation and mitigation of PCDD/Fs in iron ore sintering [J]. Chemosphere, 2011, 85(3): 291-299. doi: 10.1016/j.chemosphere.2011.08.020 [33] 桑义敏, 余望, 籍龙杰, 等. 土壤直接热脱附过程中二恶英生成特性和抑制机理研究进展 [J]. 环境工程学报, 2020, 14(11): 2912-2923. doi: 10.12030/j.cjee.202002036 SANG Y M, YU W, JI L J, et al. Research progress on formation characteristics and inhibition mechanism of dioxins during direct thermal desorption of soil [J]. Chinese Journal of Environmental Engineering, 2020, 14(11): 2912-2923(in Chinese). doi: 10.12030/j.cjee.202002036
[34] CHIN Y T, LIN C, CHANG-CHIEN G P, et al. PCDD/F formation catalyzed by the metal chlorides and chlorinated aromatic compounds in fly ash [J]. Aerosol and Air Quality Research, 2012, 12(2): 228-236. doi: 10.4209/aaqr.2011.09.0139 [35] HATANAKA T, IMAGAWA T, TAKEUCHI M. Formation of PCDD/fs in artificial solid waste incineration in a laboratory-scale fluidized-bed reactor: Influence of contents and forms of chlorine sources in high-temperature combustion [J]. Environmental Science & Technology, 2000, 34(18): 3920-3924. [36] 杨建建, 周永信, 苏建, 等. 含氯有机污染土壤热脱附过程中二噁英的生成机理及抑制措施 [J]. 四川环境, 2020, 39(3): 90-96. YANG J J, ZHOU Y X, SU J, et al. Formation mechanism and control measures of dioxins during thermal desorption of chlorinated organic contaminated soil [J]. Sichuan Environment, 2020, 39(3): 90-96(in Chinese).
[37] EVERAERT K, BAEYENS J. The formation and emission of dioxins in large scale thermal processes [J]. Chemosphere, 2002, 46(3): 439-448. doi: 10.1016/S0045-6535(01)00143-6 [38] HATANAKA T, IMAGAWA T, TAKEUCHI M. Effects of copper chloride on formation of polychlorinated dibenzofurans in model waste incineration in a laboratory-scale fluidized-bed reactor [J]. Chemosphere, 2002, 46(3): 393-399. doi: 10.1016/S0045-6535(01)00059-5