-
抗生素也称抗菌素,是微生物产生的一类次级代谢产物,会抑制其他微生物的生长和存活[1]。抗生素按化学结构可分为β-内酰胺类、四环素类、大环内酯类、磺胺类和喹诺酮类五大类[2]。近几十年来,抗生素常作为人类感染性疾病的治疗剂。如今,抗生素也广泛应用于畜牧业和水产养殖[3]。然而,抗生素的广泛使用,特别是抗生素的过度使用或滥用引起了公众的关注。在抗生素的生产和应用过程中,大量的含抗生素废水产生并排放到环境中,造成严重污染[4]。残留的抗生素因具有毒性大、难生物降解等特点,传统的水处理方法(生物法、物理法、化学法)难以去除[5]。因此,在各种自然环境中经常检测到抗生素,如河水[6]、地下水[7]、地表水[8]、土壤[9]和饮用水[10]等。在自然环境中长期存在抗生素可能会导致产生和传播抗生素抗性基因(ARG)和抗生素抗性细菌(ARB),从而加速抗生素耐药性,进而对人类健康和生态系统造成威胁[11]。因此,如何将这些抗生素有效地去除仍然是人们急需解决的问题。
基于硫酸根自由基(
$\text{S}{\text{O}}_{\text{4}}^{\text{•}{-}}$ )的高级氧化技术(sulfate radical-based advanced oxidation processes,SR-AOPs)是近年国内外新兴起的一类处理难降解有机污染物的新型高级氧化技术。$\text{S}{\text{O}}_{\text{4}}^{\text{•}{-}}$ 由于它的强氧化性在降解有机污染物方面表现出巨大的优势。与传统的高级氧化技术(基于·OH)相比,$\text{S}{\text{O}}_{\text{4}}^{\text{•}{-}}$ 选择性强,半衰期长(40 μs),氧化电位高(2.5—3.1 V),具有更宽的pH应用范围,能够有效地降解抗生素污染物分解为小分子物质,减轻抗生素对微生物的抑制作用,提高其生物降解能力和去除率。近年来,国内外众多学者对SR-AOPs进行了广泛的研究,可以通过Web of Science数据库已发表论文(近5年)的数量来大致反映,如图1所示。很明显,SR-AOPs应用于去除抗生素的文章数量2020年比2016年增加了超5倍。
本文重点分析、总结和比较过硫酸盐的各种活化方式,以及SR-AOPs在去除抗生素污染物的应用,讨论和分析了抗生素的降解效果和机理,以提供SR-AOPs去除抗生素的广泛概述。最后提出了SR-AOPs用于抗生素氧化降解的研究方向和一些挑战。
过硫酸盐的活化及其在氧化降解水中抗生素的机理和应用
Activation of persulfate and its mechanism and application in oxidative degradation of antibiotics in water
-
摘要: 抗生素是一类用于阻止和治疗微生物传染性疾病的人用和兽用药物,在人类和动物疾病治疗领域以及水产养殖业有着广泛的用途。近年来,抗生素作为一种新型污染物不断排入水体并且在水体中持续存在,对水生态环境以及人类健康造成了威胁。基于硫酸根自由基(
$\text{S}{\text{O}}_{\text{4}}^{\text{•}{-}}$ )的高级氧化技术因其快速高效、适用范围广等特点,其在处理抗生素废水已经成为国内外研究热点。本文综述了近年来国内外利用UV、热、过渡金属、金属氧化物、零价金属、碳基材料、有机物、组合方式等常规及新型活化方法活化过硫酸盐以及处理抗生素废水的研究进展,并讨论了不同活化方式对抗生素的降解效率及机理的影响,最后展望了过硫酸盐高级氧化技术应用于抗生素降解的研究方向和挑战。Abstract: Antibiotics are a class of human and veterinary drugs used to prevent and treat microbial infectious diseases. They are widely used in the treatment of human and animal diseases and in the aquaculture industry. In recent years, antibiotics, as a new type of pollutant, have been continuously discharged into water bodies and continue to exist in water bodies, posing a threat to the aquatic environment and human health. The sulfate radical-based advanced oxidation processes have become a research hotspot in the treatment of antibiotic wastewater due to its rapid, high-efficiency and wide application range. This article reviews the research progress in the treatment of antibiotic wastewater using conventional and new persulfate activation methods such as UV, heat, transition metals, metal oxides, zero-valent metals, carbon-based materials, organic compounds, and combination methods at domestic and foreign, and the effects of different activation methods on the degradation efficiency and mechanism of antibiotics are discussed. Finally, the research directions and challenges of the application of persulfate advanced oxidation technology to antibiotic degradation are prospected.-
Key words:
- antibiotics /
- persulfate /
- catalytic oxidation /
- activation method /
- mechanism analysis
-
图 5 在nZVT/Cu(Ⅱ)/PMS体系中产生氧化自由基的机制[59]
Figure 5. The mechanism of generating oxidative free radicals in the nZVT/Cu(Ⅱ)/PMS system [59]
表 1 UV活化过硫酸盐用于降解抗生素的研究进展
Table 1. Research progress of ultraviolet light activated persulfate for degradation of antibiotics
抗生素
Antibiotics源水
Source water抗生素浓度
Antibiotic concentration过硫酸盐浓度
Persulfate concentration波长/nm
WavelengthpH 反应时间/min
Reaction time降解率/%
Degradation rate研究者
Researcher磺胺二甲嘧啶 Milli-Q水 0.02 mmol·L−1 0.2 mmol·L−1 PDS 254 6.5 45 90 Gao等[25] 磺胺甲噁唑 去离子水 20 μmol·L−1 1 mmol·L−1 PDS 254 8 120 100 Yang等[26] 氯霉素 去离子水 31 μmol·L−1 0.25 mmol·L−1 PDS 254 6.07 60 100 Ghauch等[27] 环丙沙星 Milli-Q水 50 μmol·L−1 1 mmol·L−1 PDS 254 7 60 100 Moussa等[28] 甲砜霉素 去离子水 10 μmol·L−1 1 mmol·L−1 PDS 254 7 90 100 Wang等[29] 诺氟沙星 Milli-Q水 5 μmol·L−1 100 μmol·L−1 PDS 254 7 5 100 Xue等[30] 表 2 过硫酸盐热活化用于降解抗生素的研究进展
Table 2. Research progress of persulfate thermal activation for degradation of antibiotics
抗生素
Antibiotics源水
Source water抗生素浓度
Antibiotic concentration过硫酸盐浓度
Persulfate concentration温度/℃
TemperaturepH 反应时间/h
Reaction time降解率/%
Degradation rate研究者
Researcher磺胺二甲嘧啶 Milli-Q水 0.03 mmol·L−1 2.0 mmol·L−1 PDS 60 7.0 6 100 Fan等[34] 氯霉素 去离子水 0.2 mmol·L−1 16 mmol·L−1 PDS 70 5.4 2.7 96.3 Nie等[35] 氟康唑 超纯水 10 mg·L−1 20 mmol·L−1 PDS 60 3 4 87 Yang等[36] 四环素 人工地表水 0.03 mmol·L−1 2.0 mmol·L−1 PDS 70 7.0 1.5 100 Ji等[32] 卡巴多司 Milli-Q水 30 μmol·L−1 2.0 mmol·L−1 PDS 60 7.0 4 98.6 李轶涵等[37] 青霉素G 双重蒸馏水 0.02 mmol·L−1 0.5 mmol·L−1 PDS 60 5.0 1.25 97.25 Norzaee等[38] 头孢氨苄 去离子水 0.1 mmol·L−1 1.1 mmol·L−1 PDS 60 7.0 4 100 Qian等[39] 环丙沙星 Milli-Q水 30 μmol·L−1 2.0 mmol·L−1 PDS 60 7.0 3 92 Jiang等[40] 表 3 过渡金属离子活化过硫酸盐用于降解抗生素的研究进展
Table 3. Research progress of persulfate activated by transition metal ions for degradation of antibiotics
抗生素
Antibiotics源水
Source water抗生素浓度
Antibiotic concentration过硫酸盐浓度
Persulfate concentration过渡金属离子
Transition
metal ionpH 反应时间/h
Reaction time降解率/%
Degradation rate研究者
Researcher磺胺甲噁唑 去离子水 20 mg·L−1 25 mmol·L−1 PDS Fe2+ 2.5 mmol·L−1 3.3 4 100 Luo等[41] 环丙沙星/
磺胺甲噁唑Milli-Q水 30 μmol·L−1 600 μmol·L−1 PDS Fe2+ 600 μmol·L−1 6.0 4 95.6/95.8 Ji等[42] 阿莫西林 Milli-Q水 50 μmol·L−1 600 μmol·L−1 PDS Fe2+ 600 μmol·L−1 3 1 89.69 Matta等[43] 表 4 金属氧化物活化过硫酸盐用于降解抗生素的研究进展
Table 4. Research progress of metal oxide activated persulfate for degradation of antibiotics
抗生素
Antibiotics源水
Source water抗生素浓度
Antibiotic concentration过硫酸盐浓度
Persulfate concentration金属氧化物
Metal oxidepH 反应时间/min
Reaction
time降解率/%
Degradation
rate研究者
Researcher四环素 超纯水 20 mg·L−1 42.0 µmol·L−1
PDSNi0.6Fe2.4O4
350 mg·L−17 35 86 Guan等[50] 磺胺甲噁唑 超纯水 1.6 mg·L−1 40 mg·L−1
PMSα-Fe2O3
0.4 g·L−16.8 180 100 Feng等[51] 环丙沙星 超纯水 50 mg·L−1 1.0 g·L−1
PDSFe3O4
2.0 g·L−17 40 93.73 Jiang等[52] 磺胺二甲嘧啶 去离子水 50 mg·L−1 1 mmol·L−1
PMSCuCo2O4
0.1 g·L−15 30 98 Chen等[53] 头孢氨苄/
奥沙星— 10 mg·L−1 1 mmol·L−1
PDSCuO
0.5 g·L−18 30 80/92 Li等[54] 诺氟沙星 去离子水 25 μmol·L−1 0.5 mmol·L−1
PMSCuFe2O4
0.2 g·L−17 120 90 Wang等[55] 磺胺氯哒嗪 超纯水 5 mg·L−1 0.5 mmol·L−1
PMSCoFe2O4/Al2O3
1.0 mmol·L−17 60 97.8 Wang等[56] 洛美沙星 去离子水 10 mg·L−1 0.49 mmol·L−1
PMSCo3O4/δ-FeOOH
0.25 g·L−16.08 25 82 Zhang等[47] 表 5 零价金属活化过硫酸盐用于降解抗生素的研究进展
Table 5. Research progress of zero-valent metal activated persulfate for degradation of antibiotics
抗生素
Antibiotics源水
Source water抗生素浓度
Antibiotic concentration过硫酸盐浓度
Persulfate concentration零价金属
Zero-valent metalpH 反应时间/min
Reaction time降解率/%
Degradation rate研究者
Researcher四环素 去离子水 20 mg·L−1 0.08 mmol·L−1 PMS Fe0
0.01 g·L−13.0 5 88.5 Cao等[58] 环丙沙星 原地表水 2 mg·L−1 0.25 mmol·L−1 PDS Al0
1 g·L−13.0 120 73 Olmez-Hanci等[63] 环丙沙星 超纯水 10 mg·L−1 50 mg·L−1 PDS Mn0
1.0 g·L−12.0 80 95 S. Shah等[62] 氯霉素 去离子水 10 mg·L−1 0.2 mmol·L−1 PMS Fe0
0.5 g·L−17.0 120 95.2 Tan等[64] 磺胺嘧啶 去离子水 20 μmol·L−1 1 mmol·L−1 PDS Fe0
1 mmol·L−17.0 10 83.5 Yang等[65] 诺氟沙星 超纯水 31.32 μmol·L−1 1.0 mmol·L−1 PDS Cu0
0.05 g·L−17.0 5 95.46 Deng等[61] 表 6 碳基材料活化过硫酸盐用于降解抗生素的研究进展
Table 6. Research progress of activated persulfate of carbon-based materials for degradation of antibiotics
抗生素
Antibiotics源水
Source water抗生素浓度
Antibiotic concentration过硫酸盐浓度
Persulfate concentration碳基材料
Carbon-based materialspH 反应时间/min
Reaction time降解率/%
Degradation rate研究者
Researcher磺胺氯哒嗪 去离子水 20 mg·L−1 2 g·L−1 PDS N-rGO0.2 g·L−1 8.5 180 100 Kang等[69] 磺胺甲噁唑 去离子水 5 mg·L−1 1 mmol·L−1 PDS N-GP0.05 g·L−1 6 180 99.9 Hao等[75] 氯霉素 纯水 30 mg·L−1 10 mmol·L−1 PDS Co3O4/BC0.2 g·L−1 7 10 97.6 Xu等[76] 甲硝唑 去离子水 0.58 mmol·L−1 58 mmol·L−1PDS GAC5 g·L−1 3.9 240 80 Forouzesh等[70] 诺氟沙星 去离子水 15 μmol·L−1 0.5 mmol·L−1 PMS CoFe2O4/GO0.3 g·L−1 7 20 100 Chen等[77] 环丙沙星 去离子水 30 mg·L−1 2 mmol·L−1 PMS CuFe2O4/GO 0.2 g·L−1 7 60 98 Noroozi等[78] 四环素 去离子水 1 mmol·L−1 60 mmol·L−1 PDS Fe-SCG2.5 g·L−1 2.0 120 96 Nguyen等[79] 左氧氟沙星 去离子水 10 mg·L−1 1.8 g·L−1 PDS NiFe2O4/CS0.6 g·L−1 5 105 67 Wang等[80] 甲氧苄啶 — 0.02 mmol·L−1 0.6 mmol·L−1 PMS CuFe2O4/MWCNTs
0.2 g·L−17 24 90 Kong等[81] 表 7 其他活化过硫酸盐方式用于降解抗生素的研究进展
Table 7. Research progress of other methods of activating persulfate for degradation of antibiotics
活化方式
Activation method污染物
Pollutants研究结果
Research results参考文献
References电化学(EC) 环丙沙星
(CIP)当CIP浓度为20 mg·L−1,电流密度为2.75 mA·cm−2,PDS浓度0.84 mmol·L−1,
pH = 7,反应40 min后CIP去除率为90%Malakootian等[94] 四环素
(TC)当TC浓度为50 mg·L−1,电流密度为13.33 mA·cm−2,PDS浓度12.6 mmol·L−1,
pH = 4.42,反应240 min后TC去除率为81.1%Liu等[95] 气相表面放
电等离子体四环素
(TC)当TC浓度为40 mg·L−1,PDS与TC的摩尔比为20:1, 峰值电压为7 kV,风量为1.0 L·min−1,
pH = 5.3时,反应15 min后TC去除率为87.5%Tang等[96] 微波(MW) 磺胺甲噁唑
(SMX)当SMX浓度为0.5 mmol·L−1,PDS浓度0.25 mmol·L−1,
pH = 4.7,温度为90℃时,反应60min后SMX去除率为81.4%Qi等[97] 超声辐射 四环素
(TC)当TC浓度为0.052 mmol·L−1,PDS浓度4 mmol·L−1,pH = 10,
超声波频率为35 KHz和超声波功率为 500 W时,反应120min后TC去除率为96.5%Nasseri等[98] 磺胺二甲嘧啶
(SMT)当SMT浓度为50 mg·L−1,PMS浓度0.6 g·L−1,pH = 7.5,
超声波频率为20 KHz和超声波功率为 600 W时,反应30min后SMT去除率为99.6%Yin等[99] -
[1] DEMAIN A. L, SANCHEZ S. Microbial drug discovery: 80 years of progress [J]. The Journal of Antibiotics, 2009, 62: 5-16. doi: 10.1038/ja.2008.16 [2] MARTINEZ J. L. Environmental pollution by antibiotics and by antibiotic resistance determinants [J]. Environmental Pollution, 2009, 157: 2893-2902. doi: 10.1016/j.envpol.2009.05.051 [3] NISHA A R. Antibiotic Residues - A Global Health Hazard [J]. Veterinary World, 2008, 1(12): 375-377. [4] FOCAZIO M. J, KOLPIN D. W, BARNES K. K, et al. A national reconnaissance for pharmaceuticals and other organic wastewater contaminants in the United States — II) Untreated drinking water sources [J]. Science of The Total Environment, 2008, 402: 201-216. doi: 10.1016/j.scitotenv.2008.02.021 [5] CHEN W R, DING Y, JOHNSTON C. Johnston, et al. Reaction of Lincosamide Antibiotics with Manganese Oxide in Aqueous Solution [J]. Environmental Science & Technology, 2010, 44: 4486-4492. [6] XU Y, GUO C, LUO Y, et al. Occurrence and distribution of antibiotics, antibiotic resistance genes in the urban rivers in Beijing [J]. China Environmental Pollution, 2016, 213: 833-840. doi: 10.1016/j.envpol.2016.03.054 [7] SZEKERES E, CHIRIAC C M, BARICZ A, et al. Investigating antibiotics, antibiotic resistance genes, and microbial contaminants in groundwater in relation to the proximity of urban areas [J]. Environment Pollution, 2018, 236: 734-744. doi: 10.1016/j.envpol.2018.01.107 [8] DANNER M C, ROBERTSON A, BEBRENDS V, et al. Antibiotic pollution in surface fresh waters: Occurrence and effects [J]. Science of The Total Environment, 2019, 664C: 793-804. [9] GERQUEIRA F, MATAMOROS V, BAYONA J, et al. Distribution of antibiotic resistance genes in soils and crops. A field study in legume plants (Vicia faba L. ) grown under different watering regimes [J]. Environmental Research, 2019, 170: 16-25. doi: 10.1016/j.envres.2018.12.007 [10] SANGANYADO E, GWENZI W. Antibiotic resistance in drinking water systems: Occurrence, removal, and human health risks [J]. Science of Total Environment, 2019, 669: 785-797. doi: 10.1016/j.scitotenv.2019.03.162 [11] KUNNERER K. Antibiotics in the aquatic environment – A review – Part II [J]. Chemosphere, 2009, 75: 435-441. doi: 10.1016/j.chemosphere.2008.12.006 [12] FLANAGAN J, GRIFFITH W, SKAPSKI A. The active principle of Caro's acid, HSO5–: X-ray crystal structure of KHSO5·H2O [J]. J. Chem. Soc. , Chem. Commun, 1984, 23: 1574-1575. [13] KOLTHOFF I, MILLER K. The chemistry of persulfate. I. The kinetics and mechanism of the decomposition of the persulfate ion in aqueous medium1 [J]. Journal of the American Chemical Society, 1951, 73(7): 1-30. [14] WANG J, WANG S. Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants [J]. Chemical Engineering Journal, 2018, 334: 1502-1517. doi: 10.1016/j.cej.2017.11.059 [15] TSITONAKI A, PETRI B, CRIMI M, et al. In situ chemical oxidation of contaminated soil and groundwater using persulfate: A review [J]. Critical Reviews in Environmental Science and Technology, 2010, 40: 55-91. doi: 10.1080/10643380802039303 [16] YANG Q, MA Y, CHEN F, et al. Recent advances in photo-activated sulfate radical-advanced oxidation process (SR-AOP) for refractory organic pollutants removal in water [J]. Chemical Engineering Journal, 2019, 378: 122-149. [17] MALATO S, FERNANDEZ-IBANEZ P, MALDONADO M I, et al. Decontamination and disinfection of water by solar photocatalysis: Recent overview and trends [J]. Catalysis Today, 2009, 147: 1-59. doi: 10.1016/j.cattod.2009.06.018 [18] MAURINO V, CALZA P, MINERO C, et al. Light-assisted 1, 4-dioxane degradation [J]. Chemosphere, 1997, 35: 2675-2688. doi: 10.1016/S0045-6535(97)00322-6 [19] ZHOU X, LIU D, ZHANG Y, et al. Degradation mechanism and kinetic modeling for UV/peroxydisulfate treatment of penicillin antibiotics [J]. Chemical Engineering Journal, 2018, 341: 93-101. doi: 10.1016/j.cej.2018.01.137 [20] YE J S, LIU J, OU H S, WANG L. Degradation of ciprofloxacin by 280 nm ultraviolet-activated persulfate: Degradation pathway and intermediate impact on proteome of Escherichia coli [J]. Chemosphere, 2016, 165: 311-319. doi: 10.1016/j.chemosphere.2016.09.031 [21] CUI C, JIN L, JIANG L, et al. Removal of trace level amounts of twelve sulfonamides from drinking water by UV-activated peroxymonosulfate [J]. Science of The Total Environment, 2016, 572: 244-251. doi: 10.1016/j.scitotenv.2016.07.183 [22] SERNA-GALVIS E, FERRARO F, SILVA-AGREDO J, et al. Degradation of highly consumed fluoroquinolones, penicillins and cephalosporins in distilled water and simulated hospital wastewater by UV 254 and UV 254/persulfate processes[J]. Water Research, 122(1): 128-138. [23] ZHANG Y, LI L, PAN Z, et al. Degradation of sulfamethoxazole by UV/persulfate in different water samples: Influential factors, transformation products and toxicity [J]. Chemical Engineering Journal, 2019, 379: 122354. [24] ZHU Y, WEI M, PAN Z, et al. Ultraviolet/peroxydisulfate degradation of ofloxacin in seawater: Kinetics, mechanism and toxicity of products [J]. Science of The Total Environment, 2020, 705: 135960. doi: 10.1016/j.scitotenv.2019.135960 [25] GAO Y Q, GAO N Y, DENG Y, et al. Ultraviolet (UV) light-activated persulfate oxidation of sulfamethazine in water [J]. Chemical Engineering Journal, 2012, 195/196: 248-253. doi: 10.1016/j.cej.2012.04.084 [26] YANG Y, LU X, JIANG J, et al. Degradation of sulfamethoxazole by UV, UV/H2O2 and UV/persulfate (PDS): Formation of oxidation products and effect of bicarbonate [J]. Water Research, 2017, 118: 196-207. doi: 10.1016/j.watres.2017.03.054 [27] GHAUCH A, BAALBAKI A, AMASHA M, et al. Contribution of persulfate in UV-254nm activated systems for complete degradation of chloramphenicol antibiotic in water [J]. Chemical Engineering Journal, 2017, 317: 1012-1025. doi: 10.1016/j.cej.2017.02.133 [28] MAHDI-AHMED M, CHIRON S. Ciprofloxacin oxidation by UV-C activated peroxymonosulfate in wastewater [J]. Journal of Hazardous Materials, 2014, 265: 41-46. doi: 10.1016/j.jhazmat.2013.11.034 [29] WANG F, WANG W, YUAN S, et al. Comparison of UV/H2O2 and UV/PS processes for the degradation of thiamphenicol in aqueous solution [J]. Journal of Photochemistry and Photobiology A:Chemistry, 2017, 348: 79-88. doi: 10.1016/j.jphotochem.2017.08.023 [30] XUE H, GAO S, ZHENG N, et al. Degradation of norfloxacin in aqueous solution with UV/peroxydisulfate [J]. Water Science and Technology, 2019, 79: 2387-2394. doi: 10.2166/wst.2019.240 [31] ZHAO D, LIAO X, YAN X, et al. Effect and mechanism of persulfate activated by different methods for PAHs removal in soil [J]. Journal of Hazardous Materials, 2013, 254/255: 228-235. doi: 10.1016/j.jhazmat.2013.03.056 [32] JI Y, SHI Y, DONG W, et al. Thermo-activated persulfate oxidation system for tetracycline antibiotics degradation in aqueous solution [J]. Chemical Engineering Journal, 2016, 298: 225-233. doi: 10.1016/j.cej.2016.04.028 [33] QIAN Y, LIU X, LI K, et al. Enhanced degradation of cephalosporin antibiotics by matrix components during thermally activated persulfate oxidation process [J]. Chemical Engineering Journal, 2019, 384: 123332. [34] FAN Y, JI Y, KONG D, et al. Kinetic and mechanistic investigations of the degradation of sulfamethazine in heat-activated persulfate oxidation process [J]. Journal of Hazardous Materials, 2015, 300: 39-47. doi: 10.1016/j.jhazmat.2015.06.058 [35] NIE M, YANG Y, ZHANG Z, et al. Degradation of chloramphenicol by thermally activated persulfate in aqueous solution [J]. Chemical Engineering Journal, 2014, 246: 373-382. doi: 10.1016/j.cej.2014.02.047 [36] YANG J F, YANG L M, ZHANG S B, et al. Degradation of azole fungicide fluconazole in aqueous solution by thermally activated persulfate [J]. Chemical Engineering Journal, 2017, 321: 113-122. doi: 10.1016/j.cej.2017.03.103 [37] 李轶涵, 姜恬, 周旭, 等. 热活化过硫酸盐氧化降解水溶液中的抗生素卡巴多司和奥喹多司 [J]. 环境科学学报, 2019, 39: 3821-3831. LI Y H, JIANG T, ZHOU X, et al. Thermally activated persulfate oxidation of antibiotics carbadox and olaquindox in aqueous solution [J]. Acta Scientiae Circumstantiae, 2019, 39: 3821-3831(in Chinese).
[38] NORZAEE S, TAGHAVI M, DJAHED B, et al. Degradation of penicillin G by heat activated persulfate in aqueous solution [J]. Journal of Environmental Management, 2018, 215: 316-323. [39] QIAN Y, XUE G, CHEN J, et al. Oxidation of cefalexin by thermally activated persulfate: Kinetics, products, and antibacterial activity change [J]. Journal of Hazardous Materials, 2018, 354: 153-160. doi: 10.1016/j.jhazmat.2018.05.004 [40] JIANG C, JI Y, SHI Y, et al. Sulfate radical-based oxidation of fluoroquinolone antibiotics: Kinetics, mechanisms and effects of natural water matrices [J]. Water Research, 2016, 106: 507-517. doi: 10.1016/j.watres.2016.10.025 [41] LUO T, WAN J, MA Y, et al. Sulfamethoxazole degradation by Fe(II)-activated persulfate process: Insight into the reactive sites, products identification and degradation pathways [J]. Environmental Science:Processes & Impacts, 2019: 21. [42] JI Y, FERRONATO C, SALVADOR A, et al. Degradation of ciprofloxacin and sulfamethoxazole by ferrous-activated persulfate: Implications for remediation of groundwater contaminated by antibiotics [J]. Science of The Total Environment, 2014, 472: 800-808. doi: 10.1016/j.scitotenv.2013.11.008 [43] MATTA R, YOUNES H, HANNA R, et al. Sulfate radicals mediated oxidation of amoxicillin: Optimization of key parameters [J]. Journal of Environmental Management, 2019, 245: 375-383. doi: 10.1016/j.jenvman.2019.05.030 [44] DING Y, TANG H, ZHANG S, et al. Efficient degradation of carbamazepine by easily recyclable microscaled CuFeO2 mediated heterogeneous activation of peroxymonosulfate [J]. Journal of Hazardous Materials, 2016, 317: 686-694. doi: 10.1016/j.jhazmat.2016.06.004 [45] HU P, LONG M. Cobalt-catalyzed sulfate radical-based advanced oxidation: A review on heterogeneous catalysts and applications [J]. Applied Catalysis B:Environmental, 2016, 181: 103-117. doi: 10.1016/j.apcatb.2015.07.024 [46] ZHANG H, SONG Y, NENGZI L C, et al. Activation of persulfate by a novel magnetic CuFe2O4/Bi2O3 composite for lomefloxacin degradation [J]. Chemical Engineering Journal, 2019, 379: 122362. [47] ZHANG H, WANG J, ZHANG X, et al. Enhanced removal of lomefloxacin based on peroxymonosulfate activation by Co3O4/δ-FeOOH composite [J]. Chemical Engineering Journal, 2019, 369: 834-844. doi: 10.1016/j.cej.2019.03.132 [48] CHEN L, ZUO X, ZHOU L, et al. Efficient heterogeneous activation of peroxymonosulfate by facilely prepared Co/Fe bimetallic oxides: Kinetics and mechanism [J]. Chemical Engineering Journal, 2018, 345: 364-374. doi: 10.1016/j.cej.2018.03.169 [49] LI Z, GUO C, LYU J, et al. Tetracycline degradation by persulfate activated with magnetic Cu/CuFe2O4 composite: Efficiency, stability, mechanism and degradation pathway [J]. Journal of Hazardous Materials, 2019, 373: 85-96. doi: 10.1016/j.jhazmat.2019.03.075 [50] GUAN R, YUAN X, WU Z, et al. Accelerated tetracycline degradation by persulfate activated with heterogeneous magnetic NixFe3−xO4 catalysts [J]. Chemical Engineering Journal, 2018, 350: 573-584. doi: 10.1016/j.cej.2018.05.195 [51] FENG Y, LIAO C, LI H, et al. Cu2O-promoted degradation of sulfamethoxazole by α-Fe2O3-catalyzed peroxymonosulfate under circumneutral conditions: synergistic effect, Cu/Fe ratios, and mechanisms [J]. Environmental Technology, 2018, 39: 1-11. doi: 10.1080/09593330.2017.1293164 [52] JIANG S, ZHU J, WANG Z, et al. Efficiency and mechanism of ciprofloxacin hydrochloride degradation in wastewater by Fe3O4 /Na2S2O8 [J]. Ozone:Science & Engineering, 2018, 40: 1-8. [53] CHEN C, LIU L, LI Y, et al. Insight into heterogeneous catalytic degradation of sulfamethazine by peroxymonosulfate activated with CuCo2O4 derived from bimetallic oxalate [J]. Chemical Engineering Journal, 2020, 384: 123257. doi: 10.1016/j.cej.2019.123257 [54] LI W, WU Y, GAO Y, et al. Mechanism of persulfate activation with CuO for removing cephalexin and ofloxacin in water [J]. Research on Chemical Intermediates, 2019, 45: 5549-5558. doi: 10.1007/s11164-019-03919-9 [55] WANG Y, TIAN D, CHU W, et al. Nanoscaled magnetic CuFe2O4 as an activator of peroxymonosulfate for the degradation of antibiotics norfloxacin [J]. Separation and Purification Technology, 2019, 212: 536-544. doi: 10.1016/j.seppur.2018.11.051 [56] WANG Q, SHAO Y, GAO N, et al. Activation of peroxymonosulfate by Al2O3-based CoFe2O4 for the degradation of sulfachloropyridazine sodium: Kinetics and mechanism [J]. Separation and Purification Technology, 2017, 189: 176-185. doi: 10.1016/j.seppur.2017.07.046 [57] LI R, JIN X, MEGHARAI M, et al. Heterogeneous Fenton oxidation of 2, 4-dichlorophenol using iron-based nanoparticles and persulfate system [J]. Chemical Engineering Journal, 2015, 264: 587-594. doi: 10.1016/j.cej.2014.11.128 [58] GAO J, LAI L, LAI B, et al. Degradation of tetracycline by peroxymonosulfate activated with zero-valent iron: Performance, intermediates, toxicity and mechanism [J]. Chemical Engineering Journal, 2019, 364: 45-56. doi: 10.1016/j.cej.2019.01.113 [59] YE Q, XU H, ZHANG J, et al. Enhancement of peroxymonosulfate activation for antibiotics removal by nano zero valent tungsten induced Cu(II)/Cu(I) redox cycles [J]. Chemical Engineering Journal, 2020, 382: 123054. doi: 10.1016/j.cej.2019.123054 [60] PULICHARLA R, DROUINAUD R, BRAR S K, et al. Activation of persulfate by homogeneous and heterogeneous iron catalyst to degrade chlortetracycline in aqueous solution [J]. Chemosphere, 2018, 207: 543-551. doi: 10.1016/j.chemosphere.2018.05.134 [61] DENG J, XU M, CHEN Y, et al. Highly-efficient removal of norfloxacin with nanoscale zero-valent copper activated persulfate at mild temperature [J]. Chemical Engineering Journal, 2019, 366: 491-503. doi: 10.1016/j.cej.2019.02.073 [62] SHAH N S, KHAN J A, SAYED M, et al. Hydroxyl and sulfate radical mediated degradation of ciprofloxacin using nano zerovalent manganese catalyzed S2O82− [J]. Chemical Engineering Journal, 2019, 356: 199-209. doi: 10.1016/j.cej.2018.09.009 [63] OLMEZ-HANCI T, ARSLAN-ALATON I, DOAN M, et al. Enhanced degradation of micropollutants by zero-valent aluminum activated persulfate: Assessment of toxicity and genotoxic activity [J]. Water Science and Technology, 2017, 76: 2017489. [64] CHAOQUN T, DONG Y, FU D, et al. Chloramphenicol removal by zero valent iron activated peroxymonosulfate system: Kinetics and mechanism of radical generation [J]. Chemical Engineering Journal, 2017, 334: 1006-1015. [65] YANG S, CHE D. Degradation of aquatic sulfadiazine by Fe0/persulfate: Kinetics, mechanisms, and degradation pathway [J]. RSC Advances, 2017, 7: 42233-42241. doi: 10.1039/C7RA07920F [66] REN X, CHEN C, NAGATSU M, et al. Carbon nanotubes as adsorbents in environmental pollution management: A review [J]. Chemical Engineering Journal, 2011, 170: 395-410. doi: 10.1016/j.cej.2010.08.045 [67] REN W, XIONG L, YUAN X, et al. Activation of peroxydisulfate on carbon nanotubes: electron-transfer mechanism [J]. Environmental Science & Technology, 2019, 53: 14595-14603. [68] SUN H, KWAN C, SUVOROVA A, et al. Catalytic oxidation of organic pollutants on pristine and surface nitrogen-modified carbon nanotubes with sulfate radicals [J]. Applied Catalysis B:Environmental, 2014, 154/155: 134-141. doi: 10.1016/j.apcatb.2014.02.012 [69] KANG J, DUAN X, ZHOU L, et al. Carbocatalytic activation of persulfate for removal of antibiotics in water solutions [J]. Chemical Engineering Journal, 2016, 288: 399-405. doi: 10.1016/j.cej.2015.12.040 [70] FOROUZESH M, EBADI A, AGHAEINEJAD-MEYBODI A. Degradation of metronidazole antibiotic in aqueous medium using activated carbon as a persulfate activator [J]. Separation and Purification Technology, 2019, 210: 145-151. doi: 10.1016/j.seppur.2018.07.066 [71] SHANG Y, CHEN C, ZHANG P, et al. Removal of sulfamethoxazole from water via activation of persulfate by Fe3C@NCNTs including mechanism of radical and nonradical process [J]. Chemical Engineering Journal, 2019, 375: 122004. doi: 10.1016/j.cej.2019.122004 [72] NGUYEN V T, NGUYEN T B, CHEN C W, et al. Cobalt-impregnated biochar (Co-SCG) for heterogeneous activation of peroxymonosulfate for removal of tetracycline in water [J]. Bioresource Technology, 2019, 292: 121954. doi: 10.1016/j.biortech.2019.121954 [73] JIANG X, GUO Y, ZHANG L, et al. Catalytic degradation of tetracycline hydrochloride by persulfate activated with nano Fe0 immobilized mesoporous carbon [J]. Chemical Engineering Journal, 2018, 341: 392-401. doi: 10.1016/j.cej.2018.02.034 [74] WANG S, XU L, WANG J. Nitrogen-doped graphene as peroxymonosulfate activator and electron transfer mediator for the enhanced degradation of sulfamethoxazole [J]. Chemical Engineering Journal, 2019, 375: 122041. doi: 10.1016/j.cej.2019.122041 [75] CHEN H, CARROLL K C. Metal-free catalysis of persulfate activation and organic-pollutant degradation by nitrogen-doped graphene and aminated graphene [J]. Environmental Pollution, 2016, 215: 96-102. doi: 10.1016/j.envpol.2016.04.088 [76] XU H, ZHANG Y, LI J, et al. Heterogeneous activation of peroxymonosulfate by a biochar-supported Co3O4 composite for efficient degradation of chloramphenicols [J]. Environmental Pollution, 2020, 257: 113610. doi: 10.1016/j.envpol.2019.113610 [77] CHEN L, DING D, LIU C, et al. Degradation of norfloxacin by CoFe2O4-GO composite coupled with peroxymonosulfate: A comparative study and mechanistic consideration [J]. Chemical Engineering Journal, 2017, 334: 273-284. [78] NOROOZI R, GHOLAMI M, FARZADKIA M, et al. Degradation of ciprofloxacin by CuFe2O4/GO activated PMS process in aqueous solution: performance, mechanism and degradation pathway [J]. International Journal of Environmental Analytical Chemistry, 2020: 1-22. [79] TRUC N, HUNG C M, NGUYEN B, et al. Efficient heterogeneous activation of persulfate by iron-modified biochar for removal of antibiotic from aqueous solution: a case study of tetracycline removal [J]. Catalysts, 2019, 49: 9-23. [80] WANG Z, ZHANG X, ZHANG H, et al. Synthesis of magnetic nickel ferrite/carbon sphere composite for levofloxacin elimination by activation of persulfate [J]. Separation and Purification Technology, 2019, 215: 528-539. doi: 10.1016/j.seppur.2019.01.063 [81] KONG J, LI R, WANG F, et al. Sulfate radical-induced transformation of trimethoprim with CuFe2O4/MWCNTs as a heterogeneous catalyst of peroxymonosulfate: mechanisms and reaction pathways [J]. RSC Advances, 2018, 8: 24787-24795. doi: 10.1039/C8RA04103B [82] AHMAD M, TEEL A L, WATTS R J. Persulfate activation by subsurface minerals [J]. Journal of Contaminant Hydrology, 2010, 115: 34-45. doi: 10.1016/j.jconhyd.2010.04.002 [83] CAI T, LIU Y, WANG L, et al. Activation of persulfate by photoexcited dye for antibiotic degradation: Radical and nonradical reactions [J]. Chemical Engineering Journal, 2019, 375: 122070. doi: 10.1016/j.cej.2019.122070 [84] OCAMPO A M. Persulfate activation by organic compounds[D]. Pullman: Washington State University, 2009. [85] AHMAD M, TEEL A, WATTS, R J. Mechanism of Persulfate Activation by Phenols[J]. Environmental Science & Technology 2013, 47: 5864-5871. [86] FANG G, GAO J, DIONYSIOU D D, et al. Activation of Persulfate by Quinones: Free Radical Reactions and Implication for the Degradation of PCBs [J]. Environmental Science & Technology, 2013, 47: 4605-4611. [87] NIE M, YAN C, XIONG X, et al. Degradation of chloramphenicol using a combination system of simulated solar light, Fe2+ and persulfate [J]. Chemical Engineering Journal, 2018, 348: 455-463. doi: 10.1016/j.cej.2018.04.124 [88] PAN Y, ZHANG Y, ZHOU M, et al. Synergistic degradation of antibiotic sulfamethazine by novel pre-magnetized Fe0/PS process enhanced by ultrasound [J]. Chemical Engineering Journal, 2018, 354: 777-789. doi: 10.1016/j.cej.2018.08.084 [89] HOU L, ZHANG H, XUE X. Ultrasound enhanced heterogeneous activation of peroxydisulfate by magnetite catalyst for the degradation of tetracycline in water [J]. Separation and Purification Technology, 2012, 84: 147-152. doi: 10.1016/j.seppur.2011.06.023 [90] KAUR B, KUNTUS L, TIKKER P, et al. Photo-induced oxidation of ceftriaxone by persulfate in the presence of iron oxides [J]. Science of The Total Environment, 2019, 676: 165-175. doi: 10.1016/j.scitotenv.2019.04.277 [91] TANG S, ZHAO M, YUAN D, et al. MnFe2O4 nanoparticles promoted electrochemical oxidation coupling with persulfate activation for tetracycline degradation [J]. Separation and Purification Technology, 2021, 255: 117690. doi: 10.1016/j.seppur.2020.117690 [92] WANG S, WANG J. Trimethoprim degradation by Fenton and Fe(II)-activated persulfate processes [J]. Chemosphere, 2018, 191: 97-105. doi: 10.1016/j.chemosphere.2017.10.040 [93] WU J, WANG B, CAGNETTA G, et al. Nanoscale zero valent iron-activated persulfate coupled with Fenton oxidation process for typical pharmaceuticals and personal care products degradation [J]. Separation and Purification Technology, 2020, 239: 116534. doi: 10.1016/j.seppur.2020.116534 [94] MALAKOOTIAN M, AHMADIAN M. Removal of ciprofloxacin from aqueous solution by electro-activated persulfate oxidation using aluminum electrodes [J]. Water Science and Technology, 2019, 80(3): 587-596. doi: 10.2166/wst.2019.306 [95] LIU J, ZHONG S, SONG Y, et al. Degradation of tetracycline hydrochloride by electro-activated persulfate oxidation [J]. Journal of Electroanalytical Chemistry, 2018, 809: 74-79. doi: 10.1016/j.jelechem.2017.12.033 [96] TANG S, YUAN D, RAO Y, et al. Persulfate activation in gas phase surface discharge plasma for synergetic removal of antibiotic in water [J]. Chemical Engineering Journal, 2018, 337: 446-454. doi: 10.1016/j.cej.2017.12.117 [97] QI C, LIU X, LIN C, et al. Degradation of sulfamethoxazole by microwave-activated persulfate: Kinetics, mechanism and acute toxicity [J]. Chemical Engineering Journal, 2014, 249: 6-14. doi: 10.1016/j.cej.2014.03.086 [98] NASSERI S, MAHVI A H, SEYEDSALEHI M, et al. Degradation kinetics of tetracycline in aqueous solutions using peroxydisulfate activated by ultrasound irradiation: Effect of radical scavenger and water matrix [J]. Journal of Molecular Liquids, 2017, 241: 704-714. doi: 10.1016/j.molliq.2017.05.137 [99] YIN R, GUO W, WANG H, et al. Enhanced peroxymonosulfate activation for sulfamethazine degradation by ultrasound irradiation: Performances and mechanisms [J]. Chemical Engineering Journal, 2018, 335: 145-153. doi: 10.1016/j.cej.2017.10.063 [100] WANG J, ZHUAN R. Degradation of antibiotics by advanced oxidation processes: An overview [J]. Science of The Total Environment, 2020, 701: 135023. doi: 10.1016/j.scitotenv.2019.135023 [101] WANG L, LAN X, PENG W, et al. Uncertainty and misinterpretation over identification, quantification and transformation of reactive species generated in catalytic oxidation processes: A review [J]. Journal of Hazardous Materials, 2020: 124436. [102] DUAN P, MA T, YUE Y, et al. Fe/Mn nanoparticles encapsulated in nitrogen-doped carbon nanotubes as a peroxymonosulfate activator for acetamiprid degradation [J]. Environmental Science:Nano, 2019, 6: 1799-1811. doi: 10.1039/C9EN00220K [103] LEI Y, LEI X, WESTERHOFF P, et al. Reactivity of Chlorine Radicals (Cl• and Cl2•–) with Dissolved Organic Matter and the Formation of Chlorinated Byproducts [J]. Environmental Science & Technology, 2021, 55: 689-699. [104] JI Y, WANG L, JIANG M, et al. The role of nitrite in sulfate radical-based degradation of phenolic compounds: An unexpected nitration process relevant to groundwater remediation by in-situ chemical oxidation [J]. Water Research, 2017, 123: 249-257. doi: 10.1016/j.watres.2017.06.081 [105] ZHU L, JI J, LIU J, et al. Designing 3D-MoS2 sponge as excellent cocatalysts in advanced oxidation processes for pollutant control [J]. Angewandte Chemie International Edition, 2020, 59: 13968-13976. doi: 10.1002/anie.202006059