-
生物炭是有机质在不完全燃烧过程中形成的有机残留物[1],其水溶性部分称之为溶解性黑碳(dissolved black carbon,DBC),易在环境中迁移转化[2]。每年全球河流DBC通量约为27 Tg-C,是每年全球大气沉降直接向海洋输入的可溶性生物炭量(约为1.8 Tg-C)的10倍以上[3]。DBC在河流等主要地表水环境中普遍存在,约占淡水体系中溶解性有机碳10.6%,是天然溶解性有机质(dissolved organic matter, DOM)的重要组分。太阳光是全球碳循环的重要驱动力,影响DBC的光化学转化和有毒有害物质的环境行为[4-5]。
作为DOM的重要组分,DBC中的芳香羧基、羟基和羰基等发色基团可吸收太阳光介导产生活性氧物种(reactive oxygen species,ROS),如激发三重态DBC(3DBC*),单线态氧(1O2),羟基自由基(·OH)和超氧自由基(O2·−)[6-9]。与DOM光介导产生ROS比,DBC可高效介导产生3DBC*、1O2和O2·−,如DBC光致3DBC*、1O2的量子产率分别是国际腐殖酸协会天然DOM标准品的2—3倍和10倍以上[10-15]。Zhou等研究表明DBC和天然DOM均可促进水中17β-雌二醇的光降解,其激发三重态是促进17β-雌二醇光降解的主要活性物种,但DBC的光介导降解作用更高效,这是由于体系中3DBC*的稳态浓度远高于3DOM*[14]。相比于DOM分子,DBC结构具有更高的芳香性、较多的羰基和醌基等氧化性基团和较少酚羟基等还原性基团。研究发现DOM光诱导3DOM*和1O2的产生能力与其结构芳香性和羰基含量呈现正相关。对DBC而言,随着热解温度的升高(250—600℃),其溶解性有机碳组分和极性酸性官能团含量不断减少,芳香化程度不断增强[16]。由此推断,作为DOM的重要组分,DBC的结构差异也影响其光化学活性和光致产生ROS的能力,但对于DBC结构特征与其光诱导ROS产生能力的关系尚不明确。
本研究选取小麦秸秆生物质在200℃、300℃、400℃、500℃和600℃温度下无氧热解制备的DBC作为研究对象,采用自然太阳照射,研究了不同热解温度下DBC产生ROS能力差异,并采用表征DOM光化学结构的参数[SUVA254 (254 nm处的紫外吸光系数)、E2/E3 (254 nm和365 nm处吸光度的比值)、S275-295 (275—295 nm的光谱斜率)、S350-400 (350—400 nm的光谱斜率)、SR (S275-295和S350-400的斜率比值)]来研究DBC的结构特征和3DBC*量子屈服系数(fTMP),单线态氧量子产率(
$\varPhi_{1_{{{\rm{O}}_2}}} $ )之间的构-效关系。
水中不同热解温度溶解性黑碳的光化学活性
Photochemical activity of dissolved black carbon from different pyrolysis temperature in aqueous solution
-
摘要: 为研究不同热解温度下溶解性黑碳(DBC)光化学活性与其产生活性氧物种的能力,通过自然光照研究了不同热解温度下小麦秸秆DBC光致产生其激发三重态(3DBC*)、1O2、·OH和O2·−的能力,以及DBC光谱参数(SUVA254,254 nm处的紫外吸光系数;E2/E3,254 nm和365 nm处吸光度的比值;SR,S275-295和S350-400的斜率比值)和3DBC*量子屈服系数(fTMP)、单线态氧量子产率(
$\varPhi_{1_{{{\rm{O}}_2}}} $ )之间的关系. 结果表明,3DBC*的探针2,4,6-三甲基苯酚(TMP)的光解速率随热解温度的升高先增大后减少,在300℃达到最大值;1O2的探针糠醇(FFA)的光解速率与热解温度呈反比关系;2-羟基对苯二甲酸(·OH与对苯二甲酸反应的特征化合物)的稳态浓度在200℃和300℃优于其他热解温度,XTT-O2·−复合物(O2·−与XTT钠盐反应产物)的稳态浓度在低温热解区(200℃—400℃)明显高于500℃和600℃热解温度. 量子屈服系数和量子产率计算表明,3DBC*的fTMP值随DBC热解温度变化与TMP光解呈现类似的趋势,且在300℃和400℃具有较高的fTMP,DBC光谱参数计算发现400℃热解DBC具有较高的E2/E3值,说明该DBC含有芳香酮、醌类等有利于产生激发三重态的氧化性基团,故具有较高的3DBC*量子产率; 因为3DBC*是1O2的前体物,400℃热解DBC也具有较高的1O2量子产率$\varPhi_{1_{{{\rm{O}}_2}}} $ ;低温热解DBC具有较小的SR值,说明该DBC富含酚羟基等还原性基团,有利于电子转移产生·OH和O2·−。fTMP、$\varPhi_{1_{{{\rm{O}}_2}}} $ 和E2/E3的拟合数据表明,fTMP、$\varPhi_{1_{{{\rm{O}}_2}}} $ 与E2/E3呈正比关系,可用于预测DBC光致产生3DBC*和1O2的能力。Abstract: In order to study the photochemical activity of dissolved black carbon (DBC) and its ability to produce reactive oxygen species at different pyrolysis temperatures, the photoinduced capacity of wheat straw DBC to produce its excited triplet (3DBC*), 1O2, ·OH and O2·−, and the relationship between spectral parameters of DBC (SUVA254, absorption coefficient at 254 nm; E2/E3, absorbance ratio at 254 nm and 365 nm; SR, ratio of S275-295 and S350-400), quantum yield coefficient of 3DBC* (fTMP) and singlet oxygen quantum yield ($\varPhi_{1_{{{\rm{O}}_2}}} $ ) were studied by natural light. The results showed that the photolysis rate of 3DBC* probe 2,4, 6-trimethylphenol (TMP) first increased and then decreased with the increase of pyrolysis temperature, and reached the maximum value at 300℃; the photolysis rate of 1O2 probe furfuryl alcohol (FFA) was inversely proportional to pyrolysis temperature; the steady state concentration of 2-hydroxyterephthalic acid (characteristic compound of ·OH reaction with terephthalic acid) at 200℃ and 300℃ were better than that at other pyrolysis temperatures and the steady state concentration of XTT-O2·− complex (reaction product of O2·− with XTT sodium salt) at low temperature pyrolysis zone (200—400℃) was significantly higher than that at 500℃ and 600℃. The calculation of quantum yield coefficient and quantum yield showed that the value of fTMP varied with the DBC pyrolysis temperature, which showed a similar trend to TMP photolysis, and had a higher value of fTMP at 300℃ and 400℃. The calculation of DBC spectrum parameters found that DBC pyrolysis at 400℃ had a higher values of E2/E3, indicating that the DBC contains aromatic ketones, quinones and other oxidizing groups which are conducive to the generation of excited triplet state, so it has a higher quantum yield of 3DBC*; because of 3DBC* was a precursor of 1O2, DBC pyrolysis at 400℃ also had the higher value of rate of$\varPhi_{1_{{{\rm{O}}_2}}} $ ; Low temperature pyrolysis DBC had a small value of SR, indicating that the DBC was rich in reducing groups such as phenolic hydroxyl, which is conducive to the generation of ·OH and O2·− by electron transfer. The trend fitting diagrams of fTMP,$\varPhi_{1_{{{\rm{O}}_2}}} $ and E2/E3 showed that fTMP and$\varPhi_{1_{{{\rm{O}}_2}}} $ were positively proportional to E2/E3, which can be used to predict the photoinduced capacity of DBC to produce 3DBC* and 1O2.-
Key words:
- dissolved black carbon /
- photochemistry /
- optical properties /
- reactive oxygen species /
- quantum yield
-
表 1 不同热解温度DBC的主要光学参数
Table 1. Main optical parameters of DBC at different pyrolysis temperatures
样品 pH TOC/(mg·L−1) SUVA254/(L·mg−1·m−1) E2/E3 S275-295 S350-400 SR 200℃DBC 7.0 10 4.07 3.03 0.011 0.015 0.69 300℃DBC 7.0 10 2.21 3.58 0.016 0.010 1.55 400℃DBC 7.0 10 1.27 3.63 0.019 0.011 1.77 500℃DBC 7.0 10 0.31 3.22 0.024 0.006 4.09 600℃DBC 7.0 10 0.27 2.41 0.013 0.004 3.16 -
[1] WAGNER S, JAFFÉ R, STUBBINS A. Dissolved black carbon in aquatic ecosystems [J]. Limnology and Oceanography Letters, 2018, 3(3): 168-185. doi: 10.1002/lol2.10076 [2] 魏晨辉, 付翯云, 瞿晓磊, 等. 溶解态黑碳的环境过程研究 [J]. 化学进展, 2017, 29(9): 1042-1052. doi: 10.7536/PC170444 WEI C H, FU H Y, QU X L, et al. Environmental processes of dissolved black carbon [J]. Progress in Chemistry, 2017, 29(9): 1042-1052(in Chinese). doi: 10.7536/PC170444
[3] JAFFÉ R, DING Y, NIGGEMANN J, et al. Global charcoal mobilization from soils via dissolution and riverine transport to the oceans [J]. Science, 2013, 340(6130): 345-347. doi: 10.1126/science.1231476 [4] FANG G, GAO J, LIU C, et al. Key role of persistent free radicals in hydrogen peroxide activation by biochar: implications to organic contaminant degradation [J]. Environmental Science & Technology, 2014, 48(3): 1902-1910. [5] FANG G, ZHU C, DIONYSIOU D D, et al. Mechanism of hydroxyl radical generation from biochar suspensions: implications to diethyl phthalate degradation [J]. Bioresource Technology, 2015, 176(176): 210-217. [6] ZAFIRIOU O C, JOUSSOT-DUBIEN J, ZEPP R G, et al. Photochemistry of natural waters [J]. Environmental Science & Technology, 1984, 18(12): 358A-371A. [7] ZHOU H X, LIAN L S, YAN S W, et al. Insights into the photo-induced formation of reactive intermediates from effluent organic matter: the role of chemical constituents [J]. Water Research, 2017, 112: 120-128. doi: 10.1016/j.watres.2017.01.048 [8] MCKAY G, HUANG W X, ROMERA-CASTILLO C, et al. Predicting reactive intermediate quantum yields from dissolved organic matter photolysis using optical properties and antioxidant capacity [J]. Environmental Science & Technology, 2017, 51(10): 5404-5413. [9] BODHIPAKSHA L C, SHARPLESS C M, CHIN Y P, et al. Triplet photochemistry of effluent and natural organic matter in whole water and isolates from effluent-receiving rivers [J]. Environmental Science & Technology, 2015, 49(6): 3453-3463. [10] DU Z Y, HE Y S, FAN J N, et al. Predicting apparent singlet oxygen quantum yields of dissolved black carbon and humic substances using spectroscopic indices [J]. Chemosphere, 2018, 194: 405-413. doi: 10.1016/j.chemosphere.2017.11.172 [11] FU H Y, WEI C H, QU X L, et al. Strong binding of apolar hydrophobic organic contaminants by dissolved black carbon released from biochar: a mechanism of pseudomicelle partition and environmental implications [J]. Environmental Pollution, 2018, 232: 402-410. doi: 10.1016/j.envpol.2017.09.053 [12] WANG H, ZHOU H X, MA J Z, et al. Triplet photochemistry of dissolved black carbon and its effects on the photochemical formation of reactive oxygen species [J]. Environmental Science & Technology, 2020. [13] FU H Y, LIU H T, MAO J D, et al. Photochemistry of dissolved black carbon released from biochar: reactive oxygen species generation and phototransformation [J]. Environmental Science & Technology, 2016, 50(3): 1218-1226. [14] ZHOU Z C, CHEN B N, QU X L, et al. Dissolved black carbon as an efficient sensitizer in the photochemical transformation of 17β-Estradiol in aqueous solution [J]. Environmental Science & Technology, 2018, 52(18): 10391-10399. [15] TIAN Y J, FENG L, WANG C, et al. Dissolved black carbon enhanced the aquatic photo-transformation of chlortetracycline via tripet excited-state species: the role of chemical composition [J]. Environmental Research, 2019, 179(B): 108855. [16] WEI S Y, ZHU M B, SONG J Z, et al. Comprehensive characterization of biochars produced from three major crop straws of China [J]. BioResources, 2017, 12(2): 3316-3330. [17] LASZAKOVITS J R, BERG S M, ANDERSON B G, et al. p-Nitroanisole/pyridine and p-Nitroacetophenone/pyridine actinometers revisited: quantum yields in comparison to ferrioxalate [J]. Environmental Science & Technology, 2017, 4(1): 11-14. [18] DALRYMPLE R M, CARFAGNO A K, SHARPLESS C M. Correlations between dissolved organic matter optical properties and quantum yields of singlet oxygen and hydrogen peroxide [J]. Environmental Science & Technology, 2010, 44(15): 5824-5829. [19] ZEPP R G, SHANK G C, STABENAU E, et al. Spatial and temporal variability of solar ultraviolet exposure of coral assemblages in the Florida keys: importance of colored dissolved organic matter [J]. Limnology and Oceanography, 2008, 53(5): 1909-1922. doi: 10.4319/lo.2008.53.5.1909 [20] FICHOT C G, BENNER R. The spectral slope coefficient of chromophoric dissolved organic matter (S275-295) as a tracer of terrigenous dissolved organic carbon in river-influenced ocean margins [J]. Limnology and Oceanography, 2012, 57(5): 1453-1466. doi: 10.4319/lo.2012.57.5.1453 [21] PETERSON B M, MCNALLY A M, CORY R M, et al. Spatial and temporal distribution of singlet oxygen in lake superior [J]. Environmental Science & Technology, 2012, 46(13): 7222-7229. [22] HAAG W R, HOIGNE J. Singlet oxygen in surface waters. 3. photochemical formation and steady-state concentrations in various types of waters [J]. Environmental Science & Technology, 1986, 20(4): 341-348. [23] SHARPLESS C M. Lifetimes of triplet dissolved natural organic matter (DOM) and the effect of NaBH4 reduction on singlet oxygen quantum yields: implications for DOM photophysics [J]. Environmental Science & Technology, 2012, 46(8): 4466-4473. [24] MCKNIGHT D M, BOYER E W, WESTERHOFF P K, et al. Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity [J]. Limnology and Oceanography, 2001, 46(1): 38-48. doi: 10.4319/lo.2001.46.1.0038 [25] XU F C, WEI C H, ZENG Q Q, et al. Aggregation behavior of dissolved black carbon: Implications for vertical mass flux and fractionation in aquatic systems [J]. Environmental Science & Technology, 2017, 51(23): 13723-13732. [26] 简敏菲, 高凯芳, 余厚平. 不同裂解温度对水稻秸秆制备生物炭及其特性的影响 [J]. 环境科学学报, 2016, 36(5): 1757-1765. JIAN M F, GAO K F, YU H P. Effect of different pyrolysis temperatures on the preparation and characteristics of bio-char from rice straw [J]. Acta Scientiae Circumstantiae, 2016, 36(5): 1757-1765(in Chinese).
[27] 饶潇潇, 方昭, 王建超, 等. 花生壳生物炭的制备、表征及其吸附性能 [J]. 环境科学与技术, 2017, 40(6): 14-18. RAO X X, FANG Z, WANG J C, et al. Preparation, characterization and absorption properties of peanut-shells-derived biochars [J]. Environmental Science & Technology, 2017, 40(6): 14-18(in Chinese).
[28] 潘萌娇, 孙姣, 贺强, 等. 热解终温和加热速率对棉杆热解生物炭的影响研究 [J]. 河北工业大学学报, 2014, 43(5): 60-66. PAN M J, SUN J, HE Q, et al. The effect of pyrolysis temperature and heating rate on biochar obtained from pyrolysis of cotton stalk [J]. Journal of Hebei University of Technology, 2014, 43(5): 60-66(in Chinese).
[29] ZHOU C Z, XIE Q, WANG J Q, et al. Effects of dissolved organic matter derived from freshwater and seawater on photodegradation of three antiviral drugs [J]. Environmental Pollution, 2020, 258: 113700-113707. doi: 10.1016/j.envpol.2019.113700 [30] HELMS J R, STUBBINS A, RITCHIE J D, et al. Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter [J]. Limnology and Oceanography, 2008, 53(3): 955-969. doi: 10.4319/lo.2008.53.3.0955 [31] DALZELL B J, MINOR E C, MOPPER K M. Photodegradation of estuarine dissolved organic matter: a multi-method assessment of DOM transformation [J]. Organic Geochemistry, 2009, 40(2): 243-257. doi: 10.1016/j.orggeochem.2008.10.003 [32] XIAO X, CHEN B L. A direct observation of the fine aromatic clusters and molecular structures of biochars [J]. Environmental Science & Technology, 2017, 51(10): 5473-5482. [33] JANSSEN E M, ERICKSON P R, MCNEIL K. Dual roles of dissolved organic matter as sensitizer and quencher in the photooxidation of tryptophan [J]. Environmental Science & Technology, 2014, 48(9): 4916-4924. [34] BOREEN A L, ARNOLD W A, MCNEIL K. Phtochemical fate of sulfa drugs in the aquatic environment: sulfa drugs containing five-membered heterocyclic groups [J]. Environmental Science & Technology, 2004, 38(14): 3933-3940. [35] LI Y J, WEI X X, CHEN J W, et al. Phtodegradation mechanism of sulfonamides with excited triplet state dissolved organic matter: A case of sulfadiazine with 4-carboxybenzophenone as a proxy [J]. Journal of Hazardous Materials, 2015, 290: 9-15. doi: 10.1016/j.jhazmat.2015.02.040 [36] MCNEIL K, CANONICA S. Triplet state dissolved organic matter in aquatic photochemistry: reaction mechanisms, substrate scope, and photophysical properties [J]. Environmental Science Process & Impacts, 2016, 18(11): 1381-1399. [37] POZDNYAKOV I P, SHERIN P S, SALOMATOVA V A, et al. Photooxidation of herbicide amitrole in the presence of fulvic acid [J]. Environmental Science and Pollution Research International, 2018, 25(21): 20320-20327. doi: 10.1007/s11356-017-8580-x [38] 刘雪石, 乔显亮, 刘远. DOM的光化学活性及其对污染物光解的影响 [J]. 环境科学与技术, 2017, 40(1): 85-94. LIU X S, QIAO X L, LIU Y. Photoreactivity of DOM and its effect on the photo-transformation of pollutants [J]. Environmental Science & Technology, 2017, 40(1): 85-94(in Chinese).
[39] CHEN N, HUANG Y H, HOU X J, et al. Photochemistry of hydrochar: reactive oxygen species generation and sulfadimidine degradation [J]. Environmental Science & Technology, 2017, 51(19): 11278-11287. [40] LI L L, WANG X J, FU H Y, et al. Dissolved black carbon facilitates photoreduction of Hg(Ⅱ) to Hg(0) and reduces mercury uptake by lettuce (Lactuca sativa L. ) [J]. Environmental Science & Technology, 2020, 54(18): 11137-11145. [41] 马哲, 王杰琼, 陈景文, 等. pH对不同来源溶解性有机质光致生成活性物种量子产率的影响 [J]. 环境化学, 2017, 36(9): 5-11. MA Z, WANG J Q, CHEN J W, et al. Effect of pH on the quantum yield of reactive photo-induced species generated in different sources of DOM [J]. Environmental Chemistry, 2017, 36(9): 5-11(in Chinese).