-
双酚A(bisphenol A,BPA)被广泛用作制造环氧树脂和聚碳酸酯塑料的添加剂,这些塑料制品常被用于奶瓶、食品罐内衬、饮料容器、医疗设备金属涂层等产品中,双酚A极易通过这些产品的使用迁移到食品、饮用水和环境中[1-3]。研究表明,双酚A具有内分泌干扰特性,对人体生长、生殖、发育产生不利影响,诱发内分泌系统疾病,增加癌症发病率[4-5]。由于双酚A对人类健康和环境的严重危害,建立一种特异、灵敏的双酚A检测方法具有重要意义。目前,双酚A的常规检测方法主要有高效液相色谱、气相色谱-质谱联用、液相色谱-质谱联用等,这些方法准确、可靠,但也存在前处理复杂、分析时间长、仪器较昂贵等缺点[6-8]。近年来,基于光学、电化学、表面增强拉曼、免疫原理的传感检测方法发展迅速,广泛用于各种环境污染物的快速检测[9-11],其中电化学方法因其灵敏度高、响应快速、仪器简单、可实现现场分析等优点,特别受到关注[12-14]。
为了提高传感器检测的选择性,生物分子包括抗体、适配体、多肽等常被用作识别元素对目标物进行特异性识别。虽然抗体作为识别探针具有很高的特异性,但价格昂贵、易受环境干扰,并且针对小分子识别的抗体制备困难[15-18]。适配体是一种短的单链DNA或RNA寡核苷酸,对环境较稳定,可选择性地识别各种目标物,因此常被作为抗体的良好替代品[19-20]。此外,为了提高传感器检测灵敏度,需要对工作电极进行表面修饰,其中,金属纳米粒子、量子点、碳纳米管、石墨烯等纳米材料由于具有较大的比表面积和良好的导电性,常被用于电极表面修饰,提高目标物检测灵敏度[15,21-22]。本研究利用恒电位法在玻碳电极表面制备均一的纳米金颗粒,再引入双酚A适配体,制备了纳米金-适配体电化学传感器,成功用于环境水样中痕量双酚A的选择性检测。
纳米金-适配体电化学传感器用于环境水样中双酚A检测
Gold nanoparticles-aptamer electrochemical sensor for detection of bisphenol A in environmental waters
-
摘要: 制备了一种用于检测双酚A的纳米金-适配体电化学传感器。采用恒电位沉积的方法在玻碳电极表面制备金纳米颗粒提高电极的比表面积及导电性,通过Au—S键作用将末端带有巯基、可特异性识别双酚A的适配体固定在电极表面,以[Fe(CN)6]3-/4-作为氧化还原探针,通过循环伏安法和交流阻抗法对纳米金-适配体电化学传感器的检测性能进行研究,优化了检测性能的影响因素。当金纳米颗粒沉积时间为400 s、适配体浓度为1 μmol·L−1、富集时间为50 min、检测溶液pH 7.0时,电极阻抗响应与双酚A浓度在1×10-9—5×10−6 mol·L−1范围内呈良好线性关系。发展的传感器具有良好的重现性、稳定性和抗干扰性,并成功应用于环境水样中双酚A的检测,回收率87.4%—110.0%。Abstract: A gold nanoparticles-aptamer electrochemical sensor was prepared for the determination of bisphenol A (BPA). Gold nanoparticles were deposited on the surface of glassy carbon electrode by potentiostatic deposition to improve the specific surface area and electrical conductivity of the electrode and the bisphenol A aptamer with a terminal sulfhydryl group that can specifically bind bisphenol A was immobilized onto on the modified electrode surface through the interaction between Au—S bond. Using [Fe(CN)6]3-/4- as a redox probe, the performance of gold nanoparticles-aptamer electrochemical sensor was investigated by cyclic voltammetry and electrochemical impedance spectroscopy, and the factors affecting the sensor performance were optimized. When the deposition time of gold nanoparticles was 400 s, the concentration of aptamer was 1 μmol·L−1, the enrichment time was 50 min at solution pH of 7.0, there was a linear relationship between the impedance response and bisphenol A concentrations ranging from 1×10-9 mol·L−1 to 5×10−6 mol·L−1. The prepared electrode had good reproducibility, stability and anti-interference, and was successfully applied to the detection of bisphenol A in environmental water samples with recoveries of 87.4%—110.0%.
-
Key words:
- aptamer /
- bisphenol A /
- electrochemical detection /
- gold nanoparticles
-
图 3 GCE (a),GCE-AuNPs (b),GCE-AuNPs-Aptamer (c),GCE-AuNPs-Aptamer-MCH (d),GCE-AuNPs-Aptamer-MCH-BPA (e) 在5 mmol·L−1 [Fe(CN)6]3-/4- 中的CV (A)和EIS (B)曲线图
Figure 3. CV (A) and EIS (B) curves of GCE (a), GCE-AuNPs (b), GCE-AuNPs-Aptamer (c), GCE-AuNPs-Aptamer-MCH (d), GCE-AuNPs-Aptamer-MCH-BPA (e) in 5 mmol·L−1 [Fe(CN)6]3-/4-
表 1 本方法与其他检测双酚A方法的比较
Table 1. Comparison of this method with other methods for detecting bisphenol A
表 2 实际样品中双酚A的测定结果 (n=3)
Table 2. Determination results of bisphenol A in real samples (n=3)
样品
Sample添加水平/(nmol·L−1)
Spiked实测值/(nmol·L−1)
Found回收率/%
Recovery相对标准偏差/%
RSD河水 5 5.5 110.0 1.89 50 43.7 87.4 2.80 污水 5 4.4 88.4 2.45 50 52.9 105.8 3.67 自来水 5 4.5 90.4 3.54 50 53.8 107.5 5.79 -
[1] WU C, CHENG Q, LI L Q, et al. Synergetic signal amplification of graphene-Fe2O3 hybrid and hexadecyltrimethylammonium bromide as an ultrasensitive detection platform for bisphenol A [J]. Electrochimica Acta, 2014, 115: 434-439. doi: 10.1016/j.electacta.2013.10.188 [2] MIRZAJANI H, CHENG C, WU J, et al. A highly sensitive and specific capacitive aptasensor for rapid and label-free trace analysis of Bisphenol A (BPA) in canned foods [J]. Biosensors and Bioelectronics, 2017, 89: 1059-1067. doi: 10.1016/j.bios.2016.09.109 [3] LIM D S, KWACK S J, KIM K B, et al. Potential risk of bisphenol a migration from polycarbonate containers after heating, boiling, and microwaving [J]. Journal of Toxicology and Environmental Health, Part A, 2009, 72(21/22): 1285-1291. [4] JING P, ZHANG X M, WU Z X, et al. Electrochemical sensing of bisphenol A by graphene-1-butyl-3-methylimidazolium hexafluorophosphate modified electrode [J]. Talanta, 2015, 141: 41-46. doi: 10.1016/j.talanta.2015.03.042 [5] COSIO M S, PELLICANÒ A, BRUNETTI B, et al. A simple hydroxylated multi-walled carbon nanotubes modified glassy carbon electrode for rapid amperometric detection of bisphenol A [J]. Sensors and Actuators B:Chemical, 2017, 246: 673-679. doi: 10.1016/j.snb.2017.02.104 [6] LI X N, FRANKE A A. Improvement of bisphenol A quantitation from urine by LCMS [J]. Analytical and Bioanalytical Chemistry, 2015, 407(13): 3869-3874. doi: 10.1007/s00216-015-8563-z [7] HÁKOVÁ M, CHOCHOLOUŠOVÁ HAVLÍKOVÁ L, CHVOJKA J, et al. An on-line coupling of nanofibrous extraction with column-switching high performance liquid chromatography - A case study on the determination of bisphenol A in environmental water samples [J]. Talanta, 2018, 178: 141-146. doi: 10.1016/j.talanta.2017.08.098 [8] NICOLUCCI C, ERRICO S, FEDERICO A, et al. Human exposure to Bisphenol A and liver health status: Quantification of urinary and circulating levels by LC-MS/MS [J]. Journal of Pharmaceutical and Biomedical Analysis, 2017, 140: 105-112. doi: 10.1016/j.jpba.2017.02.058 [9] SPAGNUOLO M L, MARINI F, SARABIA L A, et al. Migration test of Bisphenol A from polycarbonate cups using excitation-emission fluorescence data with parallel factor analysis [J]. Talanta, 2017, 167: 367-378. doi: 10.1016/j.talanta.2017.02.033 [10] PENG C F, PAN N, XIE Z J, et al. Determination of bisphenol A by a gold nanoflower enhanced enzyme-linked immunosorbent assay [J]. Analytical Letters, 2016, 49(10): 1492-1501. doi: 10.1080/00032719.2015.1113420 [11] QIAO Y F, LI J, LI H B, et al. A label-free photoelectrochemical aptasensor for bisphenol A based on surface plasmon resonance of gold nanoparticle-sensitized ZnO nanopencils [J]. Biosensors and Bioelectronics, 2016, 86: 315-320. doi: 10.1016/j.bios.2016.06.062 [12] ZHU Y, ZHOU C Q, YAN X P, et al. Aptamer-functionalized nanoporous gold film for high-performance direct electrochemical detection of bisphenol A in human serum [J]. Analytica Chimica Acta, 2015, 883: 81-89. doi: 10.1016/j.aca.2015.05.002 [13] YU P, LIU Y Q, ZHANG X H, et al. A novel electrochemical aptasensor for bisphenol A assay based on triple-signaling strategy [J]. Biosensors and Bioelectronics, 2016, 79: 22-28. doi: 10.1016/j.bios.2015.12.007 [14] ARABALI V, EBRAHIMI M, GHEIBI S, et al. Bisphenol A analysis in food samples using modified nanostructure carbon paste electrode as a sensor [J]. Food Analytical Methods, 2016, 9(6): 1763-1769. doi: 10.1007/s12161-015-0349-6 [15] HUANG Y, LI X F, ZHENG S N. A novel and label-free immunosensor for bisphenol A using rutin as the redox probe [J]. Talanta, 2016, 160: 241-246. doi: 10.1016/j.talanta.2016.07.017 [16] LIU Y J, LIU Y, LIU B H. A dual-signaling strategy for ultrasensitive detection of bisphenol A by aptamer-based electrochemical biosensor [J]. Journal of Electroanalytical Chemistry, 2016, 781: 265-271. doi: 10.1016/j.jelechem.2016.06.048 [17] ENSAFI A A, AMINI M, REZAEI B. Molecularly imprinted electrochemical aptasensor for the attomolar detection of bisphenol A [J]. Microchimica Acta, 2018, 185(5): 1-7. [18] YANG J, KIM S E, CHO M, et al. Highly sensitive and selective determination of bisphenol-A using peptide-modified gold electrode [J]. Biosensors and Bioelectronics, 2014, 61: 38-44. doi: 10.1016/j.bios.2014.04.009 [19] ALSAAFIN A, MCKEAGUE M. Functional nucleic acids as in vivo metabolite and ion biosensors [J]. Biosensors and Bioelectronics, 2017, 94: 94-106. doi: 10.1016/j.bios.2017.02.030 [20] NA W D, LIU X T, WANG L, et al. Label-free aptamer biosensor for selective detection of thrombin [J]. Analytica Chimica Acta, 2015, 899: 85-90. doi: 10.1016/j.aca.2015.09.051 [21] TAN F, CONG L C, LI X N, et al. An electrochemical sensor based on molecularly imprinted polypyrrole/graphene quantum dots composite for detection of bisphenol A in water samples [J]. Sensors and Actuators B:Chemical, 2016, 233: 599-606. doi: 10.1016/j.snb.2016.04.146 [22] ZHAN T R, SONG Y, TAN Z W, et al. Electrochemical bisphenol A sensor based on exfoliated Ni2Al-layered double hydroxide nanosheets modified electrode [J]. Sensors and Actuators B:Chemical, 2017, 238: 962-971. doi: 10.1016/j.snb.2016.07.151 [23] CHEN D, YAO D S, XIE C F, et al. Development of an aptasensor for electrochemical detection of tetracycline [J]. Food Control, 2014, 42: 109-115. doi: 10.1016/j.foodcont.2014.01.018 [24] ZAMORA-GÁLVEZ A, AIT-LAHCEN A, MERCANTE L A, et al. Molecularly imprinted polymer-decorated magnetite nanoparticles for selective sulfonamide detection [J]. Analytical Chemistry, 2016, 88(7): 3578-3584. doi: 10.1021/acs.analchem.5b04092 [25] WANG Y T, FENG J J, TAN Z A, et al. Electrochemical impedance spectroscopy aptasensor for ultrasensitive detection of adenosine with dual backfillers [J]. Biosensors and Bioelectronics, 2014, 60: 218-223. doi: 10.1016/j.bios.2014.04.022 [26] ALI H, MUKHOPADHYAY S, JANA N R. Selective electrochemical detection of bisphenol A using a molecularly imprinted polymer nanocomposite [J]. New Journal of Chemistry, 2019, 43(3): 1536-1543. doi: 10.1039/C8NJ05883K [27] KOYUN O, GORDUK S, GENCTEN M, et al. A novel copper(ıı) phthalocyanine-modified multiwalled carbon nanotube-based electrode for sensitive electrochemical detection of bisphenol A [J]. New Journal of Chemistry, 2019, 43(1): 85-92. doi: 10.1039/C8NJ03721C [28] KHANNA M, ROY S, KUMAR R, et al. MnO2 based bisphenol-A electrochemical sensor using micro-fluidic platform [J]. IEEE Sensors Journal, 2018, 18(6): 2206-2210. doi: 10.1109/JSEN.2018.2792476 [29] JALALVAND A R, HASELI A, FARZADFAR F, et al. Fabrication of a novel biosensor for biosensing of bisphenol A and detection of its damage to DNA [J]. Talanta, 2019, 201: 350-357. doi: 10.1016/j.talanta.2019.04.037