-
随着工业化和城市化的不断发展,在生活水平不断提高的同时,也加速了环境污染,包括化学污染和生物污染[1]. 化学污染物包括重金属[2]、过量的营养元素[3]、农药[4]、杀虫剂、芳香族化合物[5]以及其他新污染物等. 生物污染物则包括不同类型的生物毒素[6]和病原微生物[7]. 各类污染物大量累积,对生态系统和人体健康构成巨大威胁.
为保障生态安全和环境健康,开展有效的污染防治和环境管理,应提高对各类环境污染物精准识别和环境检测水平. 目前环境污染物常规检测方法包括分光光度法、原子吸收光谱法、电感耦合等离子光谱法和各类色谱法[8]. 这些方法普遍依赖昂贵的检测仪器,成本较高、操作繁琐、不适合原位检测. 生物传感器具有灵敏度高、选择性好、操作简单、响应迅速、便于原位检测等固有优势,是一类很有前景的检测方法[9]. 比率荧光生物传感器可以克服对环境和检测器变化的干扰问题,具有明显的优势. 共振能量转移(resonance energy transfer,RET)是从供体发色团到邻近基态受体分子的非辐射能量转移,是目前主流的比率荧光策略. RET生物传感器依据供体发色团的不同可以分为荧光共振能量转移(fluorescence resonance energy transfer,FRET)传感器、生物发光共振能量转移(bioluminescence resonance energy transfer,BRET)传感器和化学发光共振能量转移(chemiluminescence resonance energy transfer,CRET)传感器(图1).
本文总结了目前RET生物传感器在环境检测领域的研究进展,包括用于重金属、阴离子、有机污染物、生物毒素和病原微生物等污染物的检测,并针对不同环境污染物分析了RET传感体系的构建特点,最后探讨了基于RET的生物传感器在环境领域应用所面临的挑战,并对其未来发展前景进行了展望,以期为相关研究提供参考.
基于共振能量转移的生物传感器用于环境检测的研究进展
Research progress of biosensors based on resonance energy transfer in the field of environmental pollutant detection
-
摘要: 共振能量转移(RET)是从受激或自发光供体到邻近基态受体(生色团猝灭剂或荧光团)的非辐射能量转移. 利用该原理构建的生物传感器具有高灵敏度、高选择性、自动校正的特点,在环境检测领域具有巨大的应用潜力. 本文综述了目前RET生物传感器在环境检测领域(包括重金属、阴离子、有机污染物、生物毒素和病原微生物的检测)的研究进展,并针对不同环境污染物分析了RET传感体系的构建特点,最后探讨了基于RET的生物传感器在环境领域应用所面临的挑战,并对其未来发展前景进行了展望.Abstract: Resonant energy transfer (RET) is a non-radiative energy transfer from stimulated or self-luminous donors to adjacent ground state receptors (chromophore quenchers or fluorophores). Biosensors based on this principle have the characteristics of high sensitivity, high selectivity, and automatic correction, and have great application potential in the field of environmental monitoring. In this paper, the research progress of RET biosensors in environmental monitoring (including the detection of heavy metals, anions, organic pollutants, biotoxins, and pathogenic microorganisms) is reviewed, and the construction characteristics of RET sensing systems for different environmental pollutants are analyzed. Finally, the challenges of RET-based biosensors in the environmental field are discussed, and its future development prospects are prospected.
-
表 1 RET生物传感器在重金属离子检测中的应用
Table 1. Applications of RET biosensor in the detection of heavy metal ions
目标物
TargetRET类型
Type of RET供体
Donor受体
Acceptor分子识别元件
Molecular recognition
element识别元件类型
Type of recognition
element检测限
Limit of
detection检测范围
Range of
detection参考文献
ReferenceHg2+ FRET ECFP Venus 汞结合蛋白 MerP 结合蛋白 — 0.210—
1.196 μmol·L−1[15] Hg2+ FRET FAM、HEX GO 汞适体探针:5'-TTC TTT CTT CGC GTT GTT TGT T-FAM-3' 适体 3.5 nmol·L−1 10—
249 nmol·L−1[23] Hg2+ FRET fluorescein, F DABCYL 富含T-T对的寡脱氧核糖核苷酸序列(5'-dabcyl-d TTC TTT CTT CCC CTT GTT TGT T-6-fluorescein-3') 适体 40 nmol·L−1 40—
100 nmol·L−1[20] Hg2+ FRET 荧光素 四甲基罗丹明 汞敏感 DNA 适体(MSD) 适体 7 nmol·L−1 10—
200 nmol·L−1[21] Hg2+ FRET CD GO 寡核苷酸ODN:5'-NH2-(CH2)6 -TTC TTT CTT CGC GTT GTT TGT T-3' 适体 2.6 nmol·L−1 5—
200 nmol·L−1[2] Pb2+ FRET Cy3 Cy5 Pb2+ 依赖性DNA酶(5'-GGG GGG GGG GTG AGT GCT TCC ACT ATA GGA AGA GAT GAA AAA A-(CH2)6-bio-3') DNA酶 0.077 nmol·L−1 0.1—
1000 nmol·L−1[19] Pb2+ FRET FAM Cy3 DNA片段1(含铅、汞特异性结合序列)、DNA片段1(含银、汞特异性结合序列) 适体 20 nmol·L−1 — [24] Pb2+ FRET FAM、HEX GO 铅适体探针:5'-GGA AGG TGT GGA AGG-HEX-3' 适体 2.56 nmol·L−1 10—
100 nmol·L−1[23] Pb2+ CRET 血红素/G-四链体催化 H2O2对鲁米诺的氧化发光 FAM Pb2+ 依赖性DNA酶8-17(5'-CAC GTC CAT CTC TTC TCC GAG CCG GTC GAA ATA GTG AGT-FAM-3') DNA酶 5 nmol·L−1 7.5—
125 nmol·L−1[18] Cu2+ FRET 色氨酸Trp 丹磺酰氯 铜电阻操纵子编码蛋白C(CopC) 结合蛋白 7 nmol·L−1 0.04—
11 μmol·L−1[16] Cu2+ FRET Alexa Fluor 488 红色荧光蛋白DsRed 红色荧光蛋白DsRed — — 200—
5000 nmol·L−1[25] Cu2+ CRET Cu2+催化的H2O2/鲁米诺发光体系 QD(620 nm) Ser-Pro-Gly-His肽 多肽 50 nmol·L−1 0.2—
10 μmol·L−1[22] Zn2+ FRET ECFP DsRED 植物锌转运蛋白 结合蛋白 — — [17] Zn2+ FRET CFP YFP Synechococcus sp.的 Zn结合金属硫蛋白 结合蛋白 — 100—2000、
60—1400、
5.0—250、30—
900 μmol·L−1[26] Zn2+ BRET/FRET NanoLuc、Cerulean Cerulean、Citrine 双组氨酸和半胱氨酸残基四面体 Zn2+复合物 多肽 — Kd((15.6 ±
1.0) pmol·L−1)[27] Ca2+ BRET Rluc8 Venus Ca 2+结合蛋白钙调蛋白 (CaM) 及其靶肽 M13 结合蛋白 — Kd
(1.9 μmol·L−1)[28] Ca2+ BRET NanoLuc cp229Venus
ΔC10人类中心体 Centrin 蛋白3的Mg2+/Ca2+检测域 结合蛋白 — 0.1—
20 mmol·L−1[29] Mg2+ BRET NanoLuc cp229Venus
ΔC10人类中心体 Centrin 蛋白3的Mg2+/Ca2+检测域 结合蛋白 — 1—
10 mmol·L−1[29] As3+ FRET ECFP Venus 砷结合蛋白ArsR 结合蛋白 — 5.00—53.78、
2.00—45.50、
6.00—58.96、
0.20—
55.67 μmol·L−1[30] Tl+ FRET FAM TMR PS2.M血红素适体(GTG GGT AGG GCG GGT TGG) 适体 59 μmol·L−1 59—
300 μmol·L−1[31] Co2+ FRET ECFP Venus 硫酸盐还原菌Desulfovibrio vulgaris Hildenborough钴螯合酶钴结合域 结合蛋白 — 0.05—80、
0.1—120、
0.09—
200 μmol·L−1[32] Ni2+ FRET ECFP Venus 大肠杆菌镍结合蛋白NikA 结合蛋白 — 5—5000、
0.5—3000、
0.1—5000、
10—
5000 μmol·L−1[33] Ag+ FRET ECFP Venus 银结合蛋白CusF 结合蛋白 — 1.679—7.198、
2.039—6.879、
2.232—
7.249 μmol·L−1[34] Pt2+ CRET 3,4,5-三甲氧基苯基-乙二醛(TMPG)与鸟嘌呤(G)核苷酸的衍生反应 6-carboxy-2',4,7, 7'-四氯荧光素 (TET) 铂控制的链霉亲和素结合适体 适体 0.26 μmol·L−1 0.5—
513 μmol·L−1[35] — 未提及 表 2 RET生物传感器在无机阴离子检测中的应用
Table 2. Applications of RET biosensor in the detection of inorganic anions
目标物
TargetRET类型
Type of RET供体
Donor受体
Acceptor分子识别元件
Molecular recognition element识别原件类型
Type of recognition element检测范围
Range of detection参考文献
ReferencePO43- FRET ECFP Venus Synechococcus strain OS-A 磷酸盐结合蛋白 结合蛋白 25—1200 nmol·L−1、80—5600 nmol·L−1、0.4—25 μmol·L−1、0.5—34 μmol·L−1、25—1600 μmol·L−1、3—170 mmol·L−1 [36] NO3- FRET CFP YFP Synechocystis sp. 6803 硝酸盐结合蛋白NrtA 结合蛋白 0.5—50 μmol·L−1、0.6—50 μmol·L−1、0.2—80 μmol·L−1、0.7—20 μmol·L−1 [37] NO3- FRET CFP cp195Venus 根瘤菌NasS与其转录反终止子NasT双组分 结合蛋白 Kd(39.5 μmol·L−1) [3] NO2- FRET CFP cp195Venus 根瘤菌NasS与其转录反终止子NasT双组分 结合蛋白 Kd(256 μmol·L−1) [3] MoO42- FRET CFP YFP 大肠杆菌转录因子ModE的C末端钼酸盐结合域(MoBD) 结合蛋白 Kd(47 nmol·L−1) [39] SO42- FRET ECFP mVenus 鼠伤寒沙门氏菌的硫酸盐结合蛋白 (sbp) 结合蛋白 0.3—90 μmol·L−1、0.2—50 μmol·L−1、40—800 μmol·L−1、0.5—80 μmol·L−1 [38] — 未提及 表 3 RET生物传感器在有机污染物检测中的应用
Table 3. Applications of RET biosensor in the detection of organic pollutants
目标物分类
Target classification目标物
TargetRET
类型
Type of
RET供体
Donor受体
Acceptor分子识别元件
Molecular
recognition
element识别元件
类型
Type of
recognition
element检测限
Limit of detection检测范围
Range of detection参考文献
Reference抗生素 四环素(TC) FRET Eu3+穴状化合物 Cy5 抗TC多克隆抗体 抗体 0.0106 ng·mL−1 0.0273—
9.2645 ng·mL−1[46] 抗生素 氟喹诺酮衍生物(FQs) FRET β-NaLuF4:Yb、Er、Gd UCNPs AuNPs 抗FQs抗体 抗体 0.2 ng·mL−1 1—80 ng·mL−1 [40] 抗生素 氟喹诺酮衍生物(FQs) BRET Rluc QD 抗ENR单链可变抗体 抗体 0.003 ng·mL−1 0.023—
25.6 ng·mL−1[41] 抗生素 磺胺二甲嘧啶(SMZ) FRET RhoB AuNPs SMZ适体SMZ1S(5'-CGT TAG ACG-3') 适体 0.82 ng·mL−1 1.25—
40 ng·mL−1[47] 抗生素 氯霉素(CAP) FRET FAM PCN-222 CAP适体(5'-FAM-ACT TCA GTG AGT TGT CCC ACG GTC GGC GAG TCG GTG GTA G-3') 适体 0.08 pg·mL−1 0.1 pg·mL−1—
10 ng·mL−1[42] 农药 甲基对硫磷、久效磷、乐果 FRET UCNPs AuNPs 乙酰胆碱酯酶(AChE) 酶 0.67、23、67 ng·L−1 parathion-methyl
2—20000 ng·L−1[4] 农药 二嗪农 FRET β-NaYF4: Yb、Er UCNPs GO 二嗪农适体5'-NH2-C6-ATC CGT CAC ACC TGC TCT AAT ATA GAG GTA TTG CTC TTG GA AAG GTA CAG GGA TGG TGT TGG CTC CCG TAT-3' 适体 0.023 ng·mL−1 0.05—
500 ng·mL−1[48] 农药 克瘟散(EDI) FRET L-半胱氨酸封端的ZnS QD GO EDI适体(5'-NH2-C6-CGT ACG GAA TTC GCT AGC TAA GGG ATT CCT GTA GAA GGA GGT CTG GAT CCG AGC TCC G-3') 适体 0.13 ng·mL−1 0.5—60 ng·mL−1 [44] 内分泌干扰物 内分泌干扰物(EDCs) BRET Rluc mAmetrine 甲基法尼脂受体MfR(protein methoprene tolerant (Met) with its partner, steroid receptor coactivator (SRC)) 受体 LOEC 3.0 μmol·L−1 — [49] 内分泌干扰物 内分泌干扰物(EDCs) BRET NanoLuc HaloTag NanoBRETTM618 人雌激素受体-α 受体 — — [50] 内分泌干扰物 双酚A(BPA) FRET 水溶性共轭聚(9,9-双(6‘-N,N,N-三甲基铵基)己基)氟苯(PFP) FAM BPA适体(5'-FAM-CCG GTG GGT GGT CAG GTG GGA TAG CGT TCC GCG TAT GGC CCA GCG CAT CAC GGG TTC GCA CCA-3') 适体 0.005 ng·mL−1 0—1.0 ng·mL−1 [51] 内分泌干扰物 双酚A(BPA) FRET FAM MGO BPA适体(5'- CCG GTG GGT GGT CAG GTG GGA TAG CGT TCC GCG TAT GGC CCA GCG CAT CAC GGG TTC GCA CCA-FAM-3') 适体 0.071 ng·mL−1 0.2—10 ng·mL−1 [52] 内分泌干扰物 双酚A(BPA) FRET FAM GO BPA适体(5'-FAM-CCG GTG GGT GGT CAG GTG GGA TAG CGT TCC GCG TAT GGC CCA GCG CAT CAC GGG TTC GCA CCA-3') 适体 0.05 ng·mL−1 0.1—10 ng·mL−1 [53] 其他 2,3,7,8-四氯代二苯-并-对二噁英(2,3,7,8-TCDD) BRET Rluc YFP 芳香烃受体AHR、HSP90 受体 10 amol·L−1 1 amol·L−1—
100 pmol·L−1[54] 其他 苯 FRET 色氨酸Trp 1-氨基蒽(1-AMA) 猪气味结合蛋白(OBPs) 结合蛋白 3.9 ng·mL−1 3.9—781 ng·mL−1 [55] 其他 2,4,6-三硝基甲苯(TNT) FRET CdSe-ZnS QD BHQ-10 抗TNT单链抗体 抗体 — Kd(15.7 μmol·L−1) [5] 其他 4,4'-二溴联苯(PBB15) FRET CD AuNPs 抗PBB15抗体 抗体 0.039 μg·mL−1 0.05—4 μg·mL−1 [56] 其他 苯并[a]芘(BaP) FRET 抗BaP抗体 BaP 抗BaP抗体 抗体 0.06 ng·mL−1 0.1—5 ng·mL−1 [57] — 未提及 表 4 RET生物传感器在生物毒素检测中的应用
Table 4. Applications of RET biosensor in the detection of biotoxin
目标物
TargetRET类型
Type of RET供体
Donor受体
Acceptor分子识别元件
Molecular recognition element识别元件
类型
Type of recognition element检测限
Limit of detection检测范围
Range of detection参考文献
Reference赭曲霉毒素A(OTA) FRET SGFP QD OTA纳米抗体 抗体 5 pg·mL−1 5—5000 pg·mL−1 [63] 微囊藻毒素-LR、微囊藻毒素-RR FRET GO AuNPs 抗MC抗体 抗体 0.5 ng·mL−1、0.3 ng·mL−1 — [59] 微囊藻毒素/节球藻毒素 FRET 7d-Eu(III)螯合物 Alexa Fluor®680 抗adda单克隆抗体和抗IC单链抗体 抗体 (MC-LR)
0.3 ng·mL−1— [60] 肉毒杆菌毒素BoNT/A轻链 FRET SNAP-25-GFP GO SNAP-25肽 多肽 1 fg·mL−1 1 fg·mL−1—
1 pg·mL−1[65] 石房蛤毒素(STX) FRET GQDs MRGO STX适体STX-41(CTT TTT ACA AAA TTC TTT TTA CCT ATA TTA TGA A) 适体 0.035 ng·mL−1 0.1—100 ng·mL−1 [64] 微囊藻毒素-LR FRET QD PoPo3染料 MC-LR适体(5'-NH2-GGC GCC AAA CAG GAC CAC CAT GAC AAT TAC TAC CAC ATT ATG CCC CAT CTC CGC-3') 适体 10−4 ng·mL−1 10−4—100 ng·mL−1 [61] 微囊藻毒素-LR、冈田酸(OA) FRET NaYF4:Yb,Ho UCNPs、Mn2+掺杂的NaYF4:Yb,Er UCNPs BHQ3、 BHQ1 MC-LR适体(bio-GGC GCC AAA CAG GAC CAC CAT GAC AAT TAC CCA TAC CAC CTC ATT ATG CCC CAT CTC CCC)、OA适体(bio-GGT CAC CAA CAA CAG GGA GCG CTA CGC GAA GGG TCA ATG TGA CGT CAT GCG GGT GTG G) 适体 0.025 ng·mL−1、0.05 ng·mL−1 0.1—50 ng·mL−1 [62] 黄曲霉毒素B1 FRET CdTe QDs AuNPs AFB1 适体( 5'-GTT GGG CAC GTG TTG TCT CTC TGT GTC TCG TGC CCT TCG CTA GGC CCA CA-3' ) 适体 1 ng·mL−1 3.1—125 ng·mL−1 [66] T-2毒素 FRET Cy3 NH2–UiO–66(MOFs) T-2毒素适体(5'–Cy3–CAG CTC AGA AGC TTG ATC CTG TAT ATC AAG CAT CGC GTG TTT ACA CAT GCG AGA GGT GAA GA CTC GAA GTC GTG CAT CTG–3') 适体 0.239 ng·mL−1 0.5—100 ng·mL−1 [6] 葡萄球菌肠毒素B(SEB) FRET CD 吖啶黄素(Acf) SEB适体(5'-PO4-AGC TCA CTG GTC GTT GTT GTC TGT TGT CTG TTA TGT TGT TTC GT−3') 适体 0.5 ng·mL−1 0.5—10 ng·mL−1 [67] — 未提及 表 5 RET生物传感器在病原微生物检测中的应用
Table 5. Applications of RET biosensor in the detection of pathogenic microorganisms
目标物
TargetRET 供体
Donor受体
Acceptor分子识别元件
Molecular recognition element识别元件类型
Type of recognition element检测限
Limit of detection检测范围
Range of detection参考文献
Reference甜菜坏死黄脉病毒 FRET QDs 罗丹明 抗谷胱甘肽-S-转移酶抗体 抗体 0.5 μg·mL−1 — [70] 副溶血性弧菌(VP) FRET POSS–PQDs
(低聚硅倍半硅氧烷-钙钛矿量子点)Ti3C2 Mxenes(碳化钛—二维碳化物和氮化物) VP适体(5'-NH2-TTT TTT TTC CAA CGA AAC AGT GAC TCG TTG-3') 适体 30 cfu·mL−1 102—
106 cfu·mL−1[7] 大肠杆菌ATCC 8739 FRET Yb,Er UCNPs AuNPs 大肠杆菌 ATCC 8739 适体(GCA ATG GTA CTA CTT CCC CAT GAG TGT TGT GAA ATG TTG GGA CAC TAG GTG GCA TAG AGC CGC AAA AGT GCA CTA CTT TGC TAA-NH2) 适体 3 cfu·mL−1 5—
106 cfu·mL−1[68] 诺如病毒GII CRET 3,4,5-三甲氧基苯基-乙二醛(TMPG)与鸟嘌呤 (G) 核苷酸的衍生反应 6-FAM 诺如病毒适体(5'-6-FAM-GGG GGT TTT CAT GTG AAG ACT ATA TGG CGC TCA CAT ATT TTT C-3') 适体 80 ng·mL−1 0.16—
10 μg·mL−1[71] 金黄色葡萄球菌 CRET Co2+/ABEI-AuNFs WS2纳米片 金葡菌适体(5'-GCA ATG GTA CGG TAC TTC CTC GGC ACG TTC TCA GTA GCG CTC GCT GGT CAT CCC ACA GCT ACG TCA AAA GTG CAC GCT ACT TTG CTA A - 3') 适体 15 cfu·mL−1 50—1.5 ×
105 cfu·mL−1[69] — 未提及 -
[1] MADHAV S, AHAMAD A, SINGH A K, et al. Water pollutants: sources and impact on the environment and human health [M]. Berlin, Germany: Springer, 2020: 43-62. [2] CUI X, ZHU L, WU J, et al. A fluorescent biosensor based on carbon dots-labeled oligodeoxyribonucleotide and graphene oxide for mercury (II) detection [J]. Biosensors & Bioelectronics, 2015, 63: 506-512. [3] HIDAKA M, GOTOH A, SHIMIZU T, et al. Visualization of NO3-/NO2- dynamics in living cells by fluorescence resonance energy transfer ( FRET) imaging employing a rhizobial two-component regulatory system [J]. Journal of Biological Chemistry, 2016, 291(5): 2260-2269. doi: 10.1074/jbc.M115.687632 [4] LONG Q, LI H, ZHANG Y, et al. Upconversion nanoparticle-based fluorescence resonance energy transfer assay for organophosphorus pesticides [J]. Biosensors & Bioelectronics, 2015, 68: 168-174. [5] GOLDMAN E R, MEDINTZ I L, WHITLEY J L, et al. A hybrid quantum dot-antibody fragment fluorescence resonance energy transfer-based TNT sensor [J]. Journal of the American Chemical Society, 2005, 127(18): 6744-6751. doi: 10.1021/ja043677l [6] ZHAO X, WANG Y, LI J, et al. A fluorescence aptasensor based on controlled zirconium-based MOFs for the highly sensitive detection of T-2 toxin [J]. Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy, 2021, 259: 119893. doi: 10.1016/j.saa.2021.119893 [7] HONG J, WANG W, WANG J, et al. A turn-on-type fluorescence resonance energy transfer aptasensor for vibrio detection using aptamer-modified polyhedral oligomeric silsesquioxane-perovskite quantum dots/Ti3C2 MXenes composite probes [J]. Microchimica Acta, 2021, 188(2): 45. doi: 10.1007/s00604-020-04679-9 [8] ZHANG Y, ZHU Y, ZENG Z, et al. Sensors for the environmental pollutant detection: Are we already there? [J]. Coordination Chemistry Reviews, 2021, 431: 213681. doi: 10.1016/j.ccr.2020.213681 [9] PERUMAL V, HASHIM U. Advances in biosensors: principle, architecture and applications [J]. Journal of Applied Biomedicine, 2014, 12(1): 1-15. doi: 10.1016/j.jab.2013.02.001 [10] MUñOZ-LOSA A, CURUTCHET C, KRUEGER B P, et al. Fretting about FRET: failure of the ideal dipole approximation [J]. Biophysical Journal, 2009, 96(12): 4779-4788. doi: 10.1016/j.bpj.2009.03.052 [11] HILDEBRANDT N. How to apply FRET: from experimental design to data analysis [M]. New Jersey, USA: Wiley Online Library, 2013: 105-163. [12] WARD W W, CORMIER M J. Energy-transfer via protein-protein interaction in renilla bioluminescence [J]. Photochemistry and Photobiology, 1978, 27(4): 389-396. doi: 10.1111/j.1751-1097.1978.tb07621.x [13] DALE N C, JOHNSTONE E K M, WHITE C W, et al. NanoBRET: the bright future of proximity-based assays [J]. Frontiers in Bioengineering and Biotechnology, 2019, 7: 56. doi: 10.3389/fbioe.2019.00056 [14] HUANG X, LI L, QIAN H, et al. A resonance energy transfer between chemiluminescent donors and luminescent quantum-dots as acceptors (CRET) [J]. Angewandte Chemie International Edition, 2006, 45(31): 5140-5143. doi: 10.1002/anie.200601196 [15] SOLEJA N, JAIRAJPURI M A, QUEEN A, et al. Genetically encoded FRET-based optical sensor for Hg2+ detection and intracellular imaging in living cells [J]. Journal of Industrial Microbiology and Biotechnology, 2019, 46(12): 1669-1683. doi: 10.1007/s10295-019-02235-w [16] ZHAO Y, CHEN D, YANG J, et al. Visual and fast detection of trace copper ions using biosensor based on FRET [J]. Spectrochim Acta A Mol Biomol Spectrosc, 2019, 217: 101-106. doi: 10.1016/j.saa.2019.03.082 [17] ADAMS J P, ADELI A, HSU C-Y, et al. Plant-based FRET biosensor discriminates environmental zinc levels [J]. Plant Biotechnology Journal, 2012, 10(2): 207-216. doi: 10.1111/j.1467-7652.2011.00656.x [18] ZHENG J, WAI J L, LAKE R J, et al. DNAzyme sensor uses chemiluminescence resonance energy transfer for rapid, portable, and ratiometric detection of metal ions [J]. Analytical Chemistry, 2021, 93(31): 10834-10840. doi: 10.1021/acs.analchem.1c01077 [19] JIN H, LIU R, BAI T, et al. A low-noise ratiometric fluorescence biosensor for detection of Pb2+ based on DNAzyme and exonuclease III-assisted cascade signal amplification [J]. Analytical and Bioanalytical Chemistry, 2022, 414: 1899-1907. doi: 10.1007/s00216-021-03825-3 [20] ONO A, TOGASHI H. Highly selective oligonucleotide-based sensor for mercury(II) in aqueous solutions [J]. Angewandte Chemie-International Edition, 2004, 43(33): 4300-4302. doi: 10.1002/anie.200454172 [21] CHU-MONG K, THAMMAKHET C, THAVARUNGKUL P, et al. A FRET based aptasensor coupled with non-enzymatic signal amplification for mercury (II) ion detection [J]. Talanta, 2016, 155: 305-313. doi: 10.1016/j.talanta.2016.05.016 [22] XIONG Y M, ZHOU L H, PENG X X, et al. A specific short peptide-assisted enhanced chemiluminescence resonance energy transfer (CRET) for label-free and ratiometric detection of copper ions in complex samples [J]. Sensors and Actuators B-Chemical, 2020, 320: 128411. doi: 10.1016/j.snb.2020.128411 [23] HUANG W H, MAI V P, WU R Y, et al. A microfluidic aptamer-based sensor for detection of mercury(II) and lead(II) ions in water [J]. Micromachines, 2021, 12(11): 1283. doi: 10.3390/mi12111283 [24] XIA J, LIN M, ZUO X, et al. Metal ion-mediated assembly of DNA nanostructures for cascade fluorescence resonance energy transfer-based fingerprint analysis [J]. Analytical Chemistry, 2014, 86(14): 7084-7087. doi: 10.1021/ac5015436 [25] SUMNER J P, WESTERBERG N M, STODDARD A K, et al. Cu+- and Cu2+-sensitive PEBBLE fluorescent nanosensors using DsRed as the recognition element [J]. Sensors and Actuators B-Chemical, 2006, 113(2): 760-767. doi: 10.1016/j.snb.2005.07.028 [26] MONSIN M, DIWAN H, KHAN I, et al. Genetically encoded FRET-based nanosensor for in vivo monitoring of zinc concentration in physiological environment of living cell [J]. Biochemical Engineering Journal, 2015, 102: 62-68. doi: 10.1016/j.bej.2015.03.012 [27] APER S J, DIERICKX P, MERKX M. Dual readout BRET/FRET sensors for measuring intracellular zinc [J]. ACS Chemical Biology, 2016, 11(10): 2854-2864. doi: 10.1021/acschembio.6b00453 [28] SAITO K, HATSUGAI N, HORIKAWA K, et al. Auto-luminescent genetically-encoded ratiometric indicator for real-time Ca2+ imaging at the single cell level [J]. PLoS ONE, 2010, 5(4): e9935. doi: 10.1371/journal.pone.0009935 [29] YANG D-M, MANURUNG R V, LIN Y-S, et al. Monitoring the heavy metal lead inside living drosophila with a FRET-based biosensor [J]. Sensors, 2020, 20(6): 1712. doi: 10.3390/s20061712 [30] SOLEJA N, MANZOOR O, KHAN P, et al. Engineering genetically encoded FRET-based nanosensors for real time display of arsenic (As3+) dynamics in living cells [J]. Scientific Reports, 2019, 9: 14. doi: 10.1038/s41598-018-36846-7 [31] HOANG M, HUANG P J J, LIU J W. G-Quadruplex DNA for Fluorescent and Colorimetric Detection of Thallium(I) [J]. Acs Sensors, 2016, 1(2): 137-143. doi: 10.1021/acssensors.5b00147 [32] SOLEJA N, IRFAN, MOHSIN M. Ratiometric imaging of flux dynamics of cobalt with an optical sensor [J]. Journal of Photochemistry and Photobiology a-Chemistry, 2020, 400: 112699. doi: 10.1016/j.jphotochem.2020.112699 [33] SOLEJA N, MOHSIN M. Real time quantification of intracellular nickel using genetically encoded FRET-based nanosensor [J]. International Journal of Biological Macromolecules, 2019, 138: 648-657. doi: 10.1016/j.ijbiomac.2019.07.115 [34] AGRAWAL N, SOLEJA N, BANO R, et al. FRET-Based genetically encoded sensor to monitor silver ions [J]. Acs Omega, 2021, 6(22): 14164-14173. doi: 10.1021/acsomega.1c00741 [35] CAI S, ZHOU Y, YE J W, et al. A chemiluminescence resonance energy transfer strategy and its application for detection of platinum ions and cisplatin [J]. Microchimica Acta, 2019, 186(7): 463. doi: 10.1007/s00604-019-3509-3 [36] GU H, LALONDE S, OKUMOTO S, et al. A novel analytical method for in vivo phosphate tracking [J]. FEBS Letters, 2006, 580(25): 5885-5893. doi: 10.1016/j.febslet.2006.09.048 [37] FATIMA U, AMEEN F, SOLEJA N, et al. A fluorescence resonance energy transfer-based analytical tool for nitrate quantification in living cells [J]. Acs Omega, 2020, 5(46): 30306-30314. doi: 10.1021/acsomega.0c04868 [38] FATIMA U, OKLA M K, MOHSIN M, et al. A non-Invasive tool for real-time measurement of sulfate in living cells [J]. International Journal of Molecular Sciences, 2020, 21(7): 2572. doi: 10.3390/ijms21072572 [39] NAKANISHI Y, IIDA S, UEOKA-NAKANISHI H, et al. Exploring dynamics of molybdate in living animal cells by a genetically encoded FRET nanosensor [J]. PLoS ONE, 2013, 8(3): e58175. doi: 10.1371/journal.pone.0058175 [40] ZHANG Z, ZHANG M, WU X Y, et al. Upconversion fluorescence resonance energy transfer-a novel approach for sensitive detection of fluoroquinolones in water samples [J]. Microchemical Journal, 2016, 124: 181-187. doi: 10.1016/j.microc.2015.08.024 [41] YU X, WEN K, WANG Z, et al. General bioluminescence resonance energy transfer homogeneous immunoassay for small molecules based on quantum dots [J]. Analytical Chemistry, 2016, 88(7): 3512-3520. doi: 10.1021/acs.analchem.5b03581 [42] LIU S, BAI J, HUO Y, et al. A zirconium-porphyrin MOF-based ratiometric fluorescent biosensor for rapid and ultrasensitive detection of chloramphenicol [J]. Biosensors & Bioelectronics, 2020, 149: 111801. [43] MAJDINASAB M, DANESHI M, LOUIS MARTY J. Recent developments in non-enzymatic (bio)sensors for detection of pesticide residues: Focusing on antibody, aptamer and molecularly imprinted polymer [J]. Talanta, 2021, 232: 122397. doi: 10.1016/j.talanta.2021.122397 [44] ARVAND M, MIRROSHANDEL A A. Highly-sensitive aptasensor based on fluorescence resonance energy transfer between L-cysteine capped ZnS quantum dots and graphene oxide sheets for the determination of edifenphos fungicide [J]. Biosensors & Bioelectronics, 2017, 96: 324-331. [45] ZHANG Y Q, XU Z L, WANG F, et al. Isolation of bactrian camel single domain antibody for parathion and development of one-step dc-FEIA method using VHH-alkaline phosphatase fusion protein [J]. Analytical Chemistry, 2018, 90(21): 12886-12892. doi: 10.1021/acs.analchem.8b03509 [46] LI Y J, WANG J Y, TIAN Y H, et al. The development of a wash-free homogeneous immunoassay method for the detection of tetracycline in environmental samples [J]. Analyst, 2021, 146(15): 4918-4926. doi: 10.1039/D1AN00929J [47] WANG Y, YAN X, KOU Q, et al. An ultrasensitive label-free fluorescent aptasensor platform for detection of sulfamethazine [J]. International Journal of Nanomedicine, 2021, 16: 2751-2759. doi: 10.2147/IJN.S307080 [48] RONG Y, LI H, OUYANG Q, et al. Rapid and sensitive detection of diazinon in food based on the FRET between rare-earth doped upconversion nanoparticles and graphene oxide [J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2020, 239: 118500. doi: 10.1016/j.saa.2020.118500 [49] MEDLOCK KAKALEY E K, EYTCHESON S A, LEBLANC G A. Ligand-mediated receptor assembly as an end point for high-throughput chemical toxicity screening [J]. Environmental Science & Technology, 2017, 51(16): 9327-9333. [50] KIM H M, SEO H, PARK Y, et al. Development of a human estrogen receptor dimerization assay for the estrogenic endocrine-disrupting chemicals using bioluminescence resonance energy transfer [J]. International Journal of Environmental Research and Public Health, 2021, 18(16): 8875. doi: 10.3390/ijerph18168875 [51] GUO L M, HU Y, ZHANG Z Q, et al. Universal fluorometric aptasensor platform based on water-soluble conjugated polymers/graphene oxide [J]. Analytical and Bioanalytical Chemistry, 2018, 410(1): 287-295. doi: 10.1007/s00216-017-0720-0 [52] HU L-Y, NIU C-G, WANG X-Y, et al. Magnetic separate "turn-on" fluorescent biosensor for Bisphenol A based on magnetic oxidation graphene [J]. Talanta, 2017, 168: 196-202. doi: 10.1016/j.talanta.2017.03.055 [53] ZHU Y, CAI Y, XU L, et al. Building an aptamer/graphene oxide FRET biosensor for one-step detection of bisphenol a [J]. ACS Applied Materials and Interfaces, 2015, 7(14): 7492-7496. doi: 10.1021/acsami.5b00199 [54] WANG B J, LIAO Y F, TUNG Y T, et al. Establishment of a bioluminescence-based bioassay for the detection of dioxin-like compounds [J]. Toxicol Mech Methods, 2013, 23(4): 247-254. doi: 10.3109/15376516.2012.745105 [55] CAPO A, PENNACCHIO A, VARRIALE A, et al. The porcine odorant-binding protein as molecular probe for benzene detection [J]. PLoS ONE, 2018, 13(9): e0202630. doi: 10.1371/journal.pone.0202630 [56] BU D, ZHUANG H S, YANG G X, et al. An immunosensor designed for polybrominated biphenyl detection based on fluorescence resonance energy transfer (FRET) between carbon dots and gold nanoparticles [J]. Sensors and Actuators B-Chemical, 2014, 195: 540-548. doi: 10.1016/j.snb.2014.01.079 [57] LI T, CHOI Y H, SHIN Y-B, et al. A fluorescence enhancement-based label-free homogeneous immunoassay of benzo a pyrene (BaP) in aqueous solutions [J]. Chemosphere, 2016, 150: 407-413. doi: 10.1016/j.chemosphere.2016.01.008 [58] THAVARAJAH W, VEROSLOFF M S, JUNG J K, et al. A primer on emerging field-deployable synthetic biology tools for global water quality monitoring [J]. npj Clean Water, 2020, 3(1): 18. doi: 10.1038/s41545-020-0064-8 [59] SHI Y, WU J, SUN Y, et al. A graphene oxide based biosensor for microcystins detection by fluorescence resonance energy transfer [J]. Biosensors & Bioelectronics, 2012, 38(1): 31-36. [60] AKTER S, LAMMINMAKI U. A 15-min non-competitive homogeneous assay for microcystin and nodularin based on time-resolved Forster resonance energy transfer (TR-FRET) [J]. Analytical and Bioanalytical Chemistry, 2021, 413(24): 6159-6170. doi: 10.1007/s00216-021-03375-8 [61] LEE E-H, SON A. Fluorescence resonance energy transfer based quantum dot-Aptasensor for the selective detection of microcystin-LR in eutrophic water [J]. Chemical Engineering Journal, 2019, 359: 1493-1501. doi: 10.1016/j.cej.2018.11.027 [62] WU S, DUAN N, ZHANG H, et al. Simultaneous detection of microcysin-LR and okadaic acid using a dual fluorescence resonance energy transfer aptasensor [J]. Analytical and Bioanalytical Chemistry, 2015, 407(5): 1303-1312. doi: 10.1007/s00216-014-8378-3 [63] SU B, ZHANG Z, SUN Z, et al. Fluonanobody-based nanosensor via fluorescence resonance energy transfer for ultrasensitive detection of ochratoxin A [J]. Journal of Hazardous Materials, 2022, 422: 126838. doi: 10.1016/j.jhazmat.2021.126838 [64] GU H, HAO L, YE H, et al. Nuclease-assisted target recycling signal amplification strategy for graphene quantum dot-based fluorescent detection of marine biotoxins [J]. Microchimica Acta, 2021, 188(4): 118. doi: 10.1007/s00604-020-04684-y [65] SHI J, GUO J, BAI G, et al. A graphene oxide based fluorescence resonance energy transfer (FRET) biosensor for ultrasensitive detection of botulinum neurotoxin A (BoNT/A) enzymatic activity [J]. Biosensors & Bioelectronics, 2015, 65: 238-244. [66] SABET F S, HOSSEINI M, KHABBAZ H, et al. FRET-based aptamer biosensor for selective and sensitive detection of aflatoxin B1 in peanut and rice [J]. Food Chemistry, 2017, 220: 527-532. doi: 10.1016/j.foodchem.2016.10.004 [67] KUMARI S, TIWARI M, DAS P. Multi format compatible visual and fluorometric detection of SEB toxin in nanogram range by carbon dot-DNA and acriflavine nano-assembly [J]. Sensors and Actuators B-Chemical, 2019, 279: 393-399. doi: 10.1016/j.snb.2018.09.110 [68] JIN B, WANG S, LIN M, et al. Upconversion nanoparticles based FRET aptasensor for rapid and ultrasenstive bacteria detection [J]. Biosensors & Bioelectronics, 2017, 90: 525-533. [69] HAO L, GU H, DUAN N, et al. An enhanced chemiluminescence resonance energy transfer aptasensor based on rolling circle amplification and WS2 nanosheet for Staphylococcus aureus detection [J]. Analytica Chimica Acta, 2017, 959: 83-90. doi: 10.1016/j.aca.2016.12.045 [70] SAFARPOUR H, SAFARNEJAD M R, TABATABAEI M, et al. Development of a quantum dots FRET-based biosensor for efficient detection of Polymyxa betae [J]. Canadian Journal of Plant Pathology-Revue Canadienne De Phytopathologie, 2012, 34(4): 507-515. doi: 10.1080/07060661.2012.709885 [71] KIM B, CHUNG K W, LEE J H. Non-stop aptasensor capable of rapidly monitoring norovirus in a sample [J]. Journal of Pharmaceutical and Biomedical Analysis, 2018, 152: 315-321. doi: 10.1016/j.jpba.2018.02.022 [72] HALL M P, UNCH J, BINKOWSKI B F, et al. Engineered luciferase reporter from a deep sea shrimp utilizing a novel imidazopyrazinone substrate [J]. ACS Chemical Biology, 2012, 7(11): 1848-1857. doi: 10.1021/cb3002478 [73] OHMURO-MATSUYAMA Y, FURUTA T, MATSUI H, et al. Miniaturization of Bright Light-Emitting Luciferase ALuc: picALuc [J]. ACS Chemical Biology, 2022, 17(4): 864-872. doi: 10.1021/acschembio.1c00897 [74] LAKOWICZ J R. Instrumentation for fluorescence spectroscopy [M]. Boston, USA: Springer, 2006: 27-61. [75] SWAINSON N M, AIEMDERM P, SAIKAEW C, et al. Biosensors for the detection of organophosphate exposure by a new diethyl thiophosphate-specific aptamer [J]. Biotechnology Letters, 2021, 43(9): 1869-1881. doi: 10.1007/s10529-021-03158-2 [76] JIN H E, ZUEGER C, CHUNG W J, et al. Selective and sensitive sensing of flame retardant chemicals through phage display discovered recognition peptide [J]. Nano Letters, 2015, 15(11): 7697-7703. doi: 10.1021/acs.nanolett.5b03678 [77] CHEN X, YAO H, SONG D, et al. Extracellular chemoreceptor of deca-brominated diphenyl ether and its engineering in the hydrophobic chassis cell for organics biosensing [J]. Chemical Engineering Journal, 2022, 433: 133266. doi: 10.1016/j.cej.2021.133266 [78] SHARIFI S, BEHZADI S, LAURENT S, et al. Toxicity of nanomaterials [J]. Chemical Society Reviews, 2012, 41(6): 2323-2343. doi: 10.1039/C1CS15188F