-
在工业化飞速发展的同时伴随着化石燃料的用量急剧增加. 化石燃料的大规模燃烧使其大气中CO2的浓度急剧增加,造成温室效应等一系列危害,严重影响人类的生活环境[1-3]. 在这种严峻的形势下,我国作出了“双碳”(碳达峰和碳中和)的庄严承诺,在2030年前CO2的排放力争达到峰值,努力争取在2060年前实现碳中和,将开启经济社会全面向绿色低碳转型的格局,降碳成为生态环境保护工作的主要任务[4-6]. 为了实现“双碳”目标降低大气中CO2的浓度,采取高效的碳捕获技术是减少碳排放实现“双碳”目标的基础.
在高效的碳捕获技术中(如图1所示),传统的CO2捕获技术有低温蒸馏、变压吸附、变温吸附和化学吸收法,但这些方法不仅能耗巨大,还存在潜在的环境风险,容易造成二次污染[7-9]. 此外,在临界压力下分离动力学直径相近的气体分子,传统的分离方法分离效率极低且能耗巨高. 由此可见,面对传统CO2捕获技术的弊端,急需一种高效绿色环保的气体分离技术,降低环境污染,提高原材料的利用率. 膜(Membranes)分离技术作为一种新型高效环境友好型分离技术,具有低能耗、高效率、操作简单、环境友好等优点,同时在分离过程中即不需要热驱动的相变,也不需要具有一定能源成本的吸附剂[2, 10-12]. 因此,膜分离技术作为高效的碳捕获技术可替代能源密集的传统分离过程,成为未来分离领域研究的热点.
膜材料是膜分离技术的关键,也是膜技术产业化的核心部件. 随着膜分离技术应用领域的不断拓展,行业对膜材料的综合性能提出了更高的要求. 根据膜材料体系的不同,将分离膜分为无机膜、聚合物膜、混合基质膜等. 其中,传统的聚合物膜具有低成本、易加工、机械性能强和化学性质稳定等优点被广泛应用在工业领域[13]. 然而,聚合物膜在渗透率和选择性之间存在“此消彼涨(Trade-off)”的关系,限制了聚合物膜在工业领域的应用[14-15]. 为了突破Trade-off效应的限制,需对膜材料体系进行革新和改进制膜工艺,才能满足工业高性能分离膜的需求. 在膜材料体系中,无机二维(2D)材料是具有原子级厚度的超薄无机纳米材料,已成为膜分离领域的研究热点材料. 高的比表面积和薄的分离层使膜能够缓解渗透性和选择性之间Trade-off效应的限制. 此外,无机2D材料膜通常具有耐高温和耐化学腐蚀的优点,为复杂的工业应用提供了可靠的保障并可长期使用[16-17].
在无机2D材料体系中(图2),2D材料凭借着独特的优势被广泛应用于膜的制备,石墨烯类材料[18]、二维过渡金属碳化物/碳氮化物(MXene)[19]、二维沸石材料[20]、二维金属有机骨架(MOF)[21]、二维共价有机框架(COF)[22]、双金属氢氧化物(LDH)[23]、过渡金属二硫化物(TMD)[24]和石墨相氮化碳(g-C3N4)[25]成为当前膜制备的热点材料. 其中,MXene因其丰富的表面化学性质和独特的物理化学性质而备受关注. 一般来说,MXene由二维过渡金属碳化物、氮化物或碳氮化物组成,分子式为Mn+1XnTx (n=1,2,3). 它通常是由MAX(3种元素组成的天然层状碳氮化物无机非金属材料)前驱体粉末在溶液中选择性刻蚀Al元素而制备. 其中M为过渡金属,X为碳和/或氮,T为表面基团(如—O、—OH、—F),A为ⅢA或ⅣA元素. 将前驱体中的MAX相的A原子剥离,剥离成单片的MXene外表面含有F、OH和/或含氧基团. MXene表面丰富的官能团赋予MXene具有高的表面积、生物相容性、亲水性、低扩散阻力、活化的金属氢氧化物位点、优异的电导率[26],使其应用在电化学储能[27]、电磁屏蔽[28]、多功能聚合物复合材料[29]及气体分离[30]等多个领域. 此外,MXene的层状结构赋予了二维MXene膜具有特殊的质量传输通道,这使气体分子和其他小分子可在层状结构中快速移动[3]. 同时,MXene膜表面丰富的官能团有利于控制层间空间[31]、对特定溶剂的亲和性[32]和电荷分布[33]的调节. 因此,MXene材料因其独特的性质被用于膜分离领域并将展现出良好的应用前景.
化石燃料的燃烧使能源危机及环境污染日益严重,为了实现“双碳”目标,探索新材料降低CO2的浓度成为当前研究的重点课题. MXenes材料凭借优异的特性在膜分离领域取得了一席之地. 为了更好地研究MXenes材料在气体分离膜领域的作用,本文对近年来MXenes基气体分离膜的制备和性能进行了综述. 重点介绍了MXenes基气体分离膜在气体分离领域等方面的研究进展. 并对MXenes材料的进一步研究进行了总结和展望,为MXenes未来的研究和实际应用提供参考依据和理论支持.
二维MXene材料在气体分离领域的研究进展
Research progress of two-dimensional MXene materials in gas separation
-
摘要: MXenes因其二维层状结构、表面丰富的官能团、亲水性和大比表面积而受到广泛关注,被认为是在气体分离领域极具竞争力的二维层状材料. 本文综述了MXenes纳米材料的成膜特性、制备、分离机理及其在气体分离领域中的最新研究进展;分析了MXene在气体分离领域的发展趋势. MXenes在气体分离领域的应用处于起初阶段,其膜分离性质及机理有待进一步明晰,导致MXenes基气体分离膜面临着许多瓶颈和挑战. 此外,本文还描述了MXenes基膜在气体分离领域的广阔应用前景,为未来该材料的发展提供了一个有价值的方向和平台.Abstract: MXenes is considered to be a highly competitive two-dimensional layered material in the field of gas separation due to its two-dimensional layered structure, rich surface functional groups, hydrophilicity and large specific surface area. In this paper, the film forming properties, preparation and separation mechanism of MXenes nanomaterials and their recent research progress in the field of gas separation are reviewed. The development trend of MXene in gas separation field was analyzed. The application of MXenes in the field of gas separation is at the initial stage, and its membrane separation properties and mechanism need to be further clarified. As a result, MXenes based gas separation membranes are facing many bottlenecks and challenges. In addition, the broad application prospects of MXenes based membranes in the field of gas separation are described. The rapid development of MXenes materials and their applications in membrane separation provide a valuable direction and platform for future applications.
-
Key words:
- MXene /
- membrane separation /
- two-dimensional materials.
-
[1] CHEN R, KONG Y. A comprehensive review of greenhouse gas based on subject categories [J]. Science of the Total Environment, 2023, 866: 161314. doi: 10.1016/j.scitotenv.2022.161314 [2] YUAN H M, LIU J G, ZHANG X H, et al. Recent advances in membrane-based materials for desalination and gas separation [J]. Journal of Cleaner Production, 2023, 387: 135845. doi: 10.1016/j.jclepro.2023.135845 [3] SHEN J, LIU G Z, JI Y F, et al. 2D MXene nanofilms with tunable gas transport channels [J]. Advanced Functional Materials, 2018, 28(31): 1801511. doi: 10.1002/adfm.201801511 [4] LIU Z M, CHAKRABORTY A, HE T B, et al. Technoeconomic and environmental optimization of combined heat and power systems with renewable integration for chemical plants [J]. Applied Thermal Engineering, 2023, 219: 119474. doi: 10.1016/j.applthermaleng.2022.119474 [5] ZHANG J F, LIN H F, LI S G, et al. Accurate gas extraction(AGE) under the dual-carbon background: Green low-carbon development pathway and prospect [J]. Journal of Cleaner Production, 2022, 377: 134372. doi: 10.1016/j.jclepro.2022.134372 [6] 曾诗鸿, 李根, 翁智雄, 等. 面向碳达峰与碳中和目标的中国能源转型路径研究 [J]. 环境保护, 2021, 49(16): 26-29. doi: 10.14026/j.cnki.0253-9705.2021.16.008 ZENG S H, LI G, WENG Z X, et al. Research on China’s energy transition path towards the goals of carbon peak and carbon neutrality [J]. Environmental Protection, 2021, 49(16): 26-29(in Chinese). doi: 10.14026/j.cnki.0253-9705.2021.16.008
[7] GÜR T M. Carbon dioxide emissions, capture, storage and utilization: Review of materials, processes and technologies [J]. Progress in Energy and Combustion Science, 2022, 89: 100965. doi: 10.1016/j.pecs.2021.100965 [8] WANG S F, LI X Q, WU H, et al. Advances in high permeability polymer-based membrane materials for CO2 separations [J]. Energy & Environmental Science, 2016, 9(6): 1863-1890. [9] DUBEY A, ARORA A. Advancements in carbon capture technologies: A review [J]. Journal of Cleaner Production, 2022, 373: 133932. doi: 10.1016/j.jclepro.2022.133932 [10] WANG H L, HE S F, QIN X D, et al. Interfacial engineering in metal-organic framework-based mixed matrix membranes using covalently grafted polyimide brushes [J]. Journal of the American Chemical Society, 2018, 140(49): 17203-17210. doi: 10.1021/jacs.8b10138 [11] ZHAO C Y, HUSSAIN W, CHLIB ALKAABY H H, et al. Polymeric nanocomposite membranes for gas separation: Performance, applications, restrictions and future perspectives [J]. Case Studies in Thermal Engineering, 2022, 38: 102323. doi: 10.1016/j.csite.2022.102323 [12] HUANG Z H, YIN C, CORRADO T, et al. Microporous pentiptycene-based polymers with heterocyclic rings for high-performance gas separation membranes [J]. Chemistry of Materials, 2022, 34(6): 2730-2742. doi: 10.1021/acs.chemmater.1c04212 [13] ROBESON L M. Correlation of separation factor versus permeability for polymeric membranes [J]. Journal of Membrane Science, 1991, 62(2): 165-185. doi: 10.1016/0376-7388(91)80060-J [14] GUO M, ZHANG Y W, XU R, et al. Ultrahigh permeation of CO2 capture using composite organosilica membranes [J]. Separation and Purification Technology, 2022, 282: 120061. doi: 10.1016/j.seppur.2021.120061 [15] ZHU B, LIU J D, WANG S F, et al. Mixed matrix membranes containing well-designed composite microcapsules for CO2 separation [J]. Journal of Membrane Science, 2019, 572: 650-657. doi: 10.1016/j.memsci.2018.11.039 [16] ISFAHANI A P, ARABI SHAMSABADI A, SOROUSH M. MXenes and other two-dimensional materials for membrane gas separation: Progress, challenges, and potential of MXene-based membranes [J]. Industrial & Engineering Chemistry Research, 2023, 62(5): 2309-2328. [17] ZHU J Y, HOU J W, ULIANA A, et al. The rapid emergence of two-dimensional nanomaterials for high-performance separation membranes [J]. Journal of Materials Chemistry A, 2018, 6(9): 3773-3792. doi: 10.1039/C7TA10814A [18] ZHU W F, QIN Y, WANG Z M, et al. Incorporating the magnetic alignment of GO composites into Pebax matrix for gas separation [J]. Journal of Energy Chemistry, 2019, 31: 1-10. doi: 10.1016/j.jechem.2018.04.013 [19] GAO L F, LI C, HUANG W C, et al. MXene/polymer membranes: Synthesis, properties, and emerging applications [J]. Chemistry of Materials, 2020, 32(5): 1703-1747. doi: 10.1021/acs.chemmater.9b04408 [20] JIA Y Y, SHI F, LI H Y, et al. Facile ionization of the nanochannels of lamellar membranes for stable ionic liquid immobilization and efficient CO2 separation [J]. ACS Nano, 2022, 16(9): 14379-14389. doi: 10.1021/acsnano.2c04670 [21] FAN H W, PENG M H, STRAUSS I, et al. MOF-in-COF molecular sieving membrane for selective hydrogen separation [J]. Nature Communications, 2021, 12(1): 1-10. doi: 10.1038/s41467-020-20314-w [22] LI J, ZHOU X, WANG J, et al. Two-dimensional covalent organic frameworks (COFs) for membrane separation: A mini review [J]. Industrial & Engineering Chemistry Research, 2019, 58(34): 15394-15406. [23] YUAN H Y, LIU P F, YANG H G. Peculiar double-layered transition metal hydroxide nanosheets [J]. Matter, 2022, 5(4): 1063-1065. doi: 10.1016/j.matt.2022.03.007 [24] WANG D, WANG Z G, WANG L, et al. Ultrathin membranes of single-layered MoS2 nanosheets for high-permeance hydrogen separation [J]. Nanoscale, 2015, 7(42): 17649-17652. doi: 10.1039/C5NR06321C [25] NIU Z H, LUO W J, MU P, et al. Nanoconfined CO2-philic ionic liquid in laminated g-C3N4 membrane for the highly efficient separation of CO2 [J]. Separation and Purification Technology, 2022, 297: 121513. doi: 10.1016/j.seppur.2022.121513 [26] ANASORI B, LUKATSKAYA M R, GOGOTSI Y. 2D metal carbides and nitrides (MXenes) for energy storage [J]. Nature Reviews Materials, 2017, 2(2): 1-17. [27] XU J S, YOU J H, WANG L, et al. MXenes serving aqueous supercapacitors: Preparation, energy storage mechanism and electrochemical performance enhancement [J]. Sustainable Materials and Technologies, 2022, 33: e00490. doi: 10.1016/j.susmat.2022.e00490 [28] LIU H G, WANG Z, WANG J, et al. Structural evolution of MXenes and their composites for electromagnetic interference shielding applications [J]. Nanoscale, 2022, 14(26): 9218-9247. doi: 10.1039/D2NR02224A [29] LI R S, GAO Q, XING H N, et al. Lightweight, multifunctional MXene/polymer composites with enhanced electromagnetic wave absorption and high-performance thermal conductivity [J]. Carbon, 2021, 183: 301-312. doi: 10.1016/j.carbon.2021.07.029 [30] LI R H, FU X F, LIU G Z, et al. Room-temperature in situ synthesis of MOF@MXene membrane for efficient hydrogen purification [J]. Journal of Membrane Science, 2022, 664: 121097. doi: 10.1016/j.memsci.2022.121097 [31] SUN Y Q, LI S L, ZHUANG Y X, et al. Adjustable interlayer spacing of ultrathin MXene-derived membranes for ion rejection [J]. Journal of Membrane Science, 2019, 591: 117350. doi: 10.1016/j.memsci.2019.117350 [32] WU X L, CUI X L, WU W J, et al. Elucidating ultrafast molecular permeation through well-defined 2D nanochannels of lamellar membranes [J]. Angewandte Chemie (International Ed. in English), 2019, 58(51): 18524-18529. doi: 10.1002/anie.201912570 [33] DING L, XIAO D, LU Z, et al. Oppositely charged Ti3C2Tx MXene membranes with 2D nanofluidic channels for osmotic energy harvesting [J]. Angewandte Chemie International Edition, 2020, 59(22): 8720-8726. doi: 10.1002/anie.201915993 [34] KARAHAN H E, GOH K, ZHANG C J, et al. MXene materials for designing advanced separation membranes [J]. Advanced Materials, 2020, 32(29): e1906697. doi: 10.1002/adma.201906697 [35] ZHANG Y M, CHEN X S, LUO C J, et al. Column-to-beam structure house inspired MXene-based integrated membrane with stable interlayer spacing for water purification [J]. Advanced Functional Materials, 2022, 32(22): 2111660. doi: 10.1002/adfm.202111660 [36] DING L, WEI Y Y, WANG Y J, et al. A two-dimensional lamellar membrane: MXene nanosheet stacks [J]. Angewandte Chemie (International Ed. in English), 2017, 56(7): 1825-1829. doi: 10.1002/anie.201609306 [37] SY S, JIANG G P, ZHANG J, et al. A near-isotropic proton-conducting porous graphene oxide membrane [J]. ACS Nano, 2020, 14(11): 14947-14959. doi: 10.1021/acsnano.0c04533 [38] HOPE M A, FORSE A C, GRIFFITH K J, et al. NMR reveals the surface functionalisation of Ti3C2 MXene [J]. Physical Chemistry Chemical Physics:PCCP, 2016, 18(7): 5099-5102. doi: 10.1039/C6CP00330C [39] RIAZI H, ANAYEE M, HANTANASIRISAKUL K, et al. Surface modification of a MXene by an aminosilane coupling agent [J]. Advanced Materials Interfaces, 2020, 7(6): 1902008. doi: 10.1002/admi.201902008 [40] HAO L, ZHANG H Q, WU X L, et al. Novel thin-film nanocomposite membranes filled with multi-functional Ti3C2Tx nanosheets for task-specific solvent transport [J]. Composites Part A:Applied Science and Manufacturing, 2017, 100: 139-149. doi: 10.1016/j.compositesa.2017.05.003 [41] WANG K, ZHOU Y F, XU W T, et al. Fabrication and thermal stability of two-dimensional carbide Ti3C2 nanosheets [J]. Ceramics International, 2016, 42(7): 8419-8424. doi: 10.1016/j.ceramint.2016.02.059 [42] XIONG D B, LI X F, BAI Z M, et al. Recent advances in layered TiC2Tx MXene for electrochemical energy storage [J]. Small, 2018, 14(17): e1703419. doi: 10.1002/smll.201703419 [43] BHARGAVA REDDY M S, KAILASA S, MARUPALLI B C G, et al. A family of 2D-MXenes: Synthesis, properties, and gas sensing applications [J]. ACS Sensors, 2022, 7(8): 2132-2163. doi: 10.1021/acssensors.2c01046 [44] MALESKI K, REN C E, ZHAO M Q, et al. Size-dependent physical and electrochemical properties of two-dimensional MXene flakes [J]. ACS Applied Materials & Interfaces, 2018, 10(29): 24491-24498. [45] WANG Y X, YUE Y, CHENG F, et al. Ti3C2Tx MXene-based flexible piezoresistive physical sensors [J]. ACS Nano, 2022, 16(2): 1734-1758. doi: 10.1021/acsnano.1c09925 [46] BORYSIUK V N, MOCHALIN V N, GOGOTSI Y. Molecular dynamic study of the mechanical properties of two-dimensional titanium carbides Ti(n+1)C(n) (MXenes) [J]. Nanotechnology, 2015, 26(26): 265705. doi: 10.1088/0957-4484/26/26/265705 [47] WU X L, HAO L, ZHANG J K, et al. Polymer-Ti3C2Tx composite membranes to overcome the trade-off in solvent resistant nanofiltration for alcohol-based system [J]. Journal of Membrane Science, 2016, 515: 175-188. doi: 10.1016/j.memsci.2016.05.048 [48] SEIDI F, ARABI SHAMSABADI A, DADASHI FIROUZJAEI M, et al. MXenes antibacterial properties and applications: A review and perspective[J]. Small (Weinheim an Der Bergstrasse, Germany), 2023: e2206716. [49] PANDEY R P, RASOOL K, MADHAVAN V E, et al. Ultrahigh-flux and fouling-resistant membranes based on layered silver/MXene (Ti3C2Tx) nanosheets [J]. Journal of Materials Chemistry A, 2018, 6(8): 3522-3533. doi: 10.1039/C7TA10888E [50] NAGUIB M, KURTOGLU M, PRESSER V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2 [J]. Advanced Materials, 2011, 23(37): 4248-4253. doi: 10.1002/adma.201102306 [51] ZHOU J, ZHA X H, ZHOU X B, et al. Synthesis and electrochemical properties of two-dimensional hafnium carbide [J]. ACS Nano, 2017, 11(4): 3841-3850. doi: 10.1021/acsnano.7b00030 [52] NAGUIB M, MASHTALIR O, CARLE J, et al. Two-dimensional transition metal carbides [J]. ACS Nano, 2012, 6(2): 1322-1331. doi: 10.1021/nn204153h [53] ALHABEB M, MALESKI K, ANASORI B, et al. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene) [J]. Chemistry of Materials, 2017, 29(18): 7633-7644. doi: 10.1021/acs.chemmater.7b02847 [54] GHIDIU M, LUKATSKAYA M R, ZHAO M Q, et al. Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance [J]. Nature, 2014, 516(7529): 78-81. doi: 10.1038/nature13970 [55] HALIM J, KOTA S, LUKATSKAYA M R, et al. Synthesis and characterization of 2D molybdenum carbide (MXene) [J]. Advanced Functional Materials, 2016, 26(18): 3118-3127. doi: 10.1002/adfm.201505328 [56] LIPATOV A, ALHABEB M, LUKATSKAYA M R, et al. MXene materials: Effect of synthesis on quality, electronic properties and environmental stability of individual monolayer Ti3C2 MXene flakes [J]. Advanced Electronic Materials, 2016, 2(12): 1600255. doi: 10.1002/aelm.201600255 [57] SHUCK C E, VENTURA-MARTINEZ K, GOAD A, et al. Safe synthesis of MAX and MXene: Guidelines to reduce risk during synthesis [J]. ACS Chemical Health & Safety, 2021, 28(5): 326-338. [58] LI T F, YAO L L, LIU Q L, et al. Fluorine-free synthesis of high-purity Ti3C2Tx (T=OH, O) via alkali treatment [J]. Angewandte Chemie International Edition, 2018, 57(21): 6115-6119. doi: 10.1002/anie.201800887 [59] ZOU G D, GUO J X, LIU X Y, et al. Hydrogenated core–shell MAX@K2Ti8O17 pseudocapacitance with ultrafast sodium storage and long-term cycling [J]. Advanced Energy Materials, 2017, 7(18): 1700700. doi: 10.1002/aenm.201700700 [60] MESHKIAN R, NÄSLUND L Å, HALIM J, et al. Synthesis of two-dimensional molybdenum carbide, Mo2C, from the gallium based atomic laminate Mo2Ga2C [J]. Scripta Materialia, 2015, 108: 147-150. doi: 10.1016/j.scriptamat.2015.07.003 [61] URBANKOWSKI P, ANASORI B, MAKARYAN T, et al. Synthesis of two-dimensional titanium nitride Ti4N3 (MXene) [J]. Nanoscale, 2016, 8(22): 11385-11391. doi: 10.1039/C6NR02253G [62] SOUNDIRARAJU B, GEORGE B K. Two-dimensional titanium nitride (Ti2N) MXene: Synthesis, characterization, and potential application as surface-enhanced Raman scattering substrate [J]. ACS Nano, 2017, 11(9): 8892-8900. doi: 10.1021/acsnano.7b03129 [63] LI Y B, SHAO H, LIN Z F, et al. A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte [J]. Nature Materials, 2020, 19(8): 894-899. doi: 10.1038/s41563-020-0657-0 [64] LUKATSKAYA M R, HALIM J, DYATKIN B, et al. Room-temperature carbide-derived carbon synthesis by electrochemical etching of MAX phases [J]. Angewandte Chemie (International Ed. in English), 2014, 53(19): 4877-4880. doi: 10.1002/anie.201402513 [65] ZHAO M Q, SEDRAN M, LING Z, et al. Synthesis of carbon/sulfur nanolaminates by electrochemical extraction of titanium from Ti2SC [J]. Angewandte Chemie (International Ed. in English), 2015, 54(16): 4810-4814. doi: 10.1002/anie.201500110 [66] SUN W, SHAH S A, CHEN Y, et al. Electrochemical etching of Ti2AlC to Ti2CTx (MXene) in low-concentration hydrochloric acid solution [J]. Journal of Materials Chemistry A, 2017, 5(41): 21663-21668. doi: 10.1039/C7TA05574A [67] XUE N, LI X S, ZHANG M Q, et al. Chemical-combined ball-milling synthesis of fluorine-free porous MXene for high-performance lithium ion batteries [J]. ACS Applied Energy Materials, 2020, 3(10): 10234-10241. doi: 10.1021/acsaem.0c02081 [68] MURALI G, RAWAL J, MODIGUNTA J K R, et al. A review on MXenes: New-generation 2D materials for supercapacitors [J]. Sustainable Energy & Fuels, 2021, 5(22): 5672-5693. [69] GHAZALY A E, AHMED H, REZK A R, et al. Ultrafast, one-step, salt-solution-based acoustic synthesis of Ti3C2 MXene [J]. ACS Nano, 2021, 15(3): 4287-4293. doi: 10.1021/acsnano.0c07242 [70] SIDHIKKU KANDATH VALAPPIL R, GHASEM N, AL-MARZOUQI M. Current and future trends in polymer membrane-based gas separation technology: A comprehensive review [J]. Journal of Industrial and Engineering Chemistry, 2021, 98: 103-129. doi: 10.1016/j.jiec.2021.03.030 [71] CARREON M A. Microporous crystalline molecular sieve membranes for molecular gas separations: What is next? [J]. ACS Materials Letters, 2022, 4(5): 868-873. doi: 10.1021/acsmaterialslett.2c00102 [72] DING L, WEI Y Y, LI L B, et al. MXene molecular sieving membranes for highly efficient gas separation [J]. Nature Communications, 2018, 9(1): 1-7. doi: 10.1038/s41467-017-02088-w [73] JAVAID A. Membranes for solubility-based gas separation applications [J]. Chemical Engineering Journal, 2005, 112(1/2/3): 219-226. [74] WIJMANS J G, BAKER R W. The solution-diffusion model: A review [J]. Journal of Membrane Science, 1995, 107(1/2): 1-21. [75] LOUDON C, McCULLOH K. Application of the Hagen—Poiseuille equation to fluid feeding through short tubes [J]. Annals of the Entomological Society of America, 1999, 92(1): 153-158. doi: 10.1093/aesa/92.1.153 [76] UHLHORN R J R, KEIZER K, BURGGRAAF A J. Gas transport and separation with ceramic membranes. Part I. Multilayer diffusion and capillary condensation [J]. Journal of Membrane Science, 1992, 66(2/3): 259-269. [77] 孙成珍, 罗东, 白博峰. 二维材料气体分离膜及其应用研究进展 [J]. 科学通报, 2023, 68(1): 53-71. doi: 10.1360/TB-2022-0503 SUN C Z, LUO D, BAI B F. Two-dimensional material membranes for gas separation and their applications [J]. Chinese Science Bulletin, 2023, 68(1): 53-71(in Chinese). doi: 10.1360/TB-2022-0503
[78] THOMMES M, KANEKO K, NEIMARK A V, et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report) [J]. Pure and Applied Chemistry, 2015, 87(9/10): 1051-1069. [79] LU Z, WU Y, DING L, et al. A lamellar MXene (Ti3C2Tx)/PSS composite membrane for fast and selective lithium-ion separation [J]. Angewandte Chemie (International Ed. in English), 2021, 60(41): 22265-22269. doi: 10.1002/anie.202108801 [80] FAN Y Y, WEI L Y, MENG X X, et al. An unprecedented high-temperature-tolerance 2D laminar MXene membrane for ultrafast hydrogen sieving [J]. Journal of Membrane Science, 2019, 569: 117-123. doi: 10.1016/j.memsci.2018.10.017 [81] LUO W J, NIU Z H, MU P, et al. Pebax and CMC@MXene-based mixed matrix membrane with high mechanical strength for the highly efficient capture of CO2 [J]. Macromolecules, 2022, 55(21): 9851-9859. doi: 10.1021/acs.macromol.2c01532 [82] SHAMSABADI A A, ISFAHANI A P, SALESTAN S K, et al. Pushing rubbery polymer membranes to be economic for CO2 separation: Embedment with Ti3C2Tx MXene nanosheets [J]. ACS Applied Materials & Interfaces, 2020, 12(3): 3984-3992. [83] LIU G Z, CHENG L, CHEN G N, et al. Pebax-based membrane filled with two-dimensional mxene nanosheets for efficient CO2 capture [J]. Chemistry, an Asian Journal, 2020, 15(15): 2364-2370. doi: 10.1002/asia.201901433