-
随着我国水污染行动计划、碧水蓝天计划等一系列环保政策的实施,我国城镇污水处理厂的普及率越来越高,且对于污水处理的提标改造需求也进一步加强. 但由于受传统城市污水处理厂生化处理工艺的限制,其出水中总氮的进一步去除却成为出水水质提标改造的难点[1]. 作为污水中总氮主要成分的硝酸盐氮不仅是水体富营养化的主要营养物质,其还具有致癌等人类健康风险[2]. 吸附、电絮凝、化学脱氮以及强化生物工艺等可用于去除水中硝酸盐氮[3 − 4],然而由于昂贵的价格、且不符合双碳技术方向而难以大规模使用.
光催化技术具有适应能力强、费用低、占地少以及无二次污染等优势成为最有前景的方向之一[5 − 7]. 光催化还原作为光催化技术的主要发展方向,已用于二氧化碳[8]、重金属[9]、硝酸盐[10 − 13]等的还原. 硝酸盐在光催化还原过程中主要产物为亚硝酸盐氮、氨氮和氮气,其中亚硝酸盐氮和氨氮仍为环境污染物质,氮气选择性就成为光催化还原的一个重要控制指标[14]. Zheng等[15]采用TiO2/Ti3C2/g-C3N4光催化剂,在硝酸盐初始质量浓度为100 mg·L−1(以氮计)、高压汞灯照射下40 min内实现了93.03%硝酸盐转化率和96.62%的氮气选择性. Li 等[16]采用独特的LiNbO3/ZnS中空结构的光催化,采用100 W高压汞灯照射90 min获得了98.84%的硝酸盐氮去除率和98.92%的氮气选择性. 光催化剂种类对硝酸盐去除及氮气选择性也至关重要. 不同的光催化剂材料被应用于硝酸盐的还原,如Fe-LiNbO3[17]、Ag/SiO2@cTiO2[18]、NH2-MIL-101(Fe)/BiVO4[12]、BiVO4 /rGO[19]等. g-C3N4作为光催化剂具有合成方法简单、化学稳定性好、较小的带隙宽度等优点[20 − 22]. 2009年,Wang 等[23]首先报道了在模拟太阳光照射下,g-C3N4光催化分解水制氢. 然而由于有限的可见光吸收范围、低的量子效率限制了其使用,金属掺杂成为改善g-C3N4光催化性能的重要手段[24 − 25]. Ag最为一种常用的贵金属受到了研究者的青睐[26 − 28]. 2011年,Meng等[29]首先报告了采用沉积法制备的Ag/g-C3N4具有较好的光催化活性,主要是有机金属杂化材料的形成促进了电子的转移. Shelton 等[30]利用Ag/g-C3N4光催化剂对比了紫外光和可见光下还原水中硝酸盐效果,发现Ag强化了还原作用. 目前对于硝酸盐还原多以中高浓度为主,而对于低浓度硝酸盐的处理仍缺乏深入研究.
本研究结合目前我国及地方城市污水处理厂总氮排放标准,选择低浓度硝酸盐氮(10 mg·L−1以氮计)为处理对象,采用简单煅烧法制备g-C3N4,并用光还原方法负载Ag,采用ICP-OES分析Ag的转化效率. 利用SEM、TEM、XRD、XPS、UV-vis等现代材料分析技术研究复合材料的物相、形貌及表面物理化学性能. 探索光催化材料对硝酸盐氮的还原效果及氮气选择性,同时研究了pH值对光催化反应的影响.
Ag/g-C3N4材料的制备及其光催化还原低浓度硝酸盐氮
Preparation of Ag/g-C3N4 material and its photocatalytic reduction of low concentration nitrate
-
摘要: 采用简单焙烧法及光还原沉淀法制备Ag/g-C3N4复合光催化材料,通过SEM、TEM、XRD、FT-IR、XPS、UV-vis等对其进行表征,并研究了该复合材料在金卤灯照射下对低浓度硝酸盐(初始质量浓度10 mg·L-1)的还原效果. 结果表明,采用5% Ag/g-C3N4光催化剂时,硝酸盐氮去除率为58.6%,相比g-C3N4光催剂去除率增加21.9%;pH值为6时,硝酸盐氮还原率和产物中氮气占比最高;在180 min 时,硝酸盐氮去除率达66.9%,产物中氮气占比为61.6%,氮气选择性为92%. Ag可作为电子捕捉剂减缓g-C3N4光生电子(e-)与空穴(h+)的复合,促进硝酸盐氮的还原;同时空穴清除剂(甲酸)氧化过程中生成过氧化物自由基(COO∙-),也可促进硝酸盐氮的还原. 经4次重复实验,硝酸盐氮去除率在65.8%以上,可见该催化剂具备良好的稳定性,具有良好的应用前景.Abstract: Ag/g-C3N4 composite photocatalytic material was prepared by simple roasting method and photoreduction precipitation mehtod. and it was characterized by scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffracometer (XRD), fourier transform infrared spectrometer (FT-IR), X-ray photoelectron spectrometer (XPS) and ultraviolet visible diffuse reflectance spectroscope (UV-vis). The reduction effect of the composite material on low concentration nitrate (the initial concentration was 10 mg·L-1) under the irradiation of gold halide lamp was studied. The results showed that the removal rate of nitrate was 58.6% when 5%Ag/g-C3N4 photocatalyst was used. Compared with g-C3N4 photocatalyst, the removal rate was increased by 21.9%. When pH value was 6, the nitrate reduction rate and nitrogen in the product were the highest. At 180 min, the nitrate removal rate reached 66.9%, the proportion of nitrogen in the product was 61.6 % and the nitrogen selectivity was 92%. Ag can be used as an electron trapping agent to slow down the recombination of g-C3N4 photogenerated electrons (E-) and holes (H+), and promote the reduction of nitrate. Meanwhile, the formation of peroxide radicals (COO∙-) during the oxidation of hole scavengers (formic acid) can also promote the reduction of nitrate. After 4 repeated experiments, the nitrate removal rate was still above 65.8 %, which showed that the catalyst has good stability and good application prospect.
-
Key words:
- Ag/g-C3N4 /
- low concentration nitrate /
- photocatalysis /
- nitrogen selectivity.
-
表 1 Ag/g-C3N4催化材料制作中银元素分析
Table 1. Analysis of silver in preparation of Ag/g-C3N4 catalytic materials
催化剂类型
Catalyst type投加Ag
Dosage of Ag溶液残余Ag
Residual amount of Ag in solution还原Ag的量/mg
Reduced Ag massAg转化效率/%
Ag Conversion efficiency浓度/(mmol·L−1)
Concentration质量/mg
Mass浓度/(mg·L−1)
Concentration质量/mg
Mass1% Ag/g-C3N4 0.8 2.14 4.9 0.12 2.02 94.39% 2% Ag/g-C3N4 1.6 4.28 11.0 0.28 4.00 93.46% 5% Ag/g-C3N4 4 10.70 34.9 0.87 9.83 91.87% 10% Ag/g-C3N4 8 21.40 61.3 1.53 19.87 92.85% -
[1] 石岩, 郑凯凯, 邹吕熙, 等. 城镇污水处理厂总氮超标逻辑分析方法及应用[J]. 环境工程学报, 2020, 14(5): 1412-1420. doi: 10.12030/j.cjee.201811049 SHI Y, ZHENG K K, ZOU L, et al. Logic analysis method and application of total nitrogen exceeding the standard in urban sewage treatment plant[J]. Chinese Journal of Environmental Engineering, 2020, 14(5): 1412-1420(in Chinese). doi: 10.12030/j.cjee.201811049
[2] ZHENG R, LI C H, HUANG K L, et al. In situ synthesis of N-doped TiO2 on Ti3C2 MXene with enhanced photocatalytic activity in the selective reduction of nitrate to N2[J]. Inorganic Chemistry Frontiers, 2022, 9(6): 1195-1207. doi: 10.1039/D1QI01614H [3] YANG X, QI X, MA G Q, et al. Novel Z-Scheme Ag/TiO2/AgMIL-101(Cr) as an efficient photocatalyst for nitrogen production from nitrate[J]. Applied Surface Science, 2019, 479: 1048-1056. doi: 10.1016/j.apsusc.2019.02.111 [4] 李炳荣, 曹特特, 王林, 等. 低氧条件下A2/O工艺对城市污水脱氮处理的中试研究[J]. 中国环境科学, 2019, 39(1): 134-140. doi: 10.3969/j.issn.1000-6923.2019.01.014 LI B R, CAO T T, WANG L, et al. A pilot-scale study on nitrogen removal of municipal wastewater by A2/O process under low dissolved oxygen condition[J]. China Environmental Science, 2019, 39(1): 134-140 (in Chinese). doi: 10.3969/j.issn.1000-6923.2019.01.014
[5] YANG H, HU S, ZHAO H, et al. High-performance Fe-doped ZIF-8 adsorbent for capturing tetracycline from aqueous solution[J]. Journal of Hazardous Materials, 2021, 416: 126046. doi: 10.1016/j.jhazmat.2021.126046 [6] 陈紫盈, 孙洁, 罗雪文, 等. BiVO4晶面生长调控及其光催化氧化罗丹明 B 和还原 Cr(Ⅵ)的性能[J]. 环境化学, 2020, 39(8): 2129-2136. doi: 10.7524/j.issn.0254-6108.2019061101 CHEN Z Y, SUN J, LUO X W, et al. Growth regulation of BiVO4 crystal plane and photocatalytic oxidation of Rhodamine B and reduction of Cr(Ⅵ) [J]. Environmental Chemistry, 2020, 39(8): 2129-2136(in Chinese). doi: 10.7524/j.issn.0254-6108.2019061101
[7] 郭桂全, 胡巧红, 王承林, 等. g-C3N4 /RGO的制备、光催化降解性能及其降解机理[J]. 环境化学, 2021, 40(3): 808-817. doi: 10.7524/j.issn.0254-6108.2019092605 GUO G Q, HU Q H, WANG C L, et al. Preparation, photocatalytic degradation performance and degradation mechanism of g-C3N4 /RGO[J]. Environmental Chemistry, 2021, 40(3): 808-817(in Chinese). doi: 10.7524/j.issn.0254-6108.2019092605
[8] ZHANG Y, PAN D L, TAO Y, et al. Photoelectrocatalytic reduction of CO2 to syngas via SnOx-enhanced Cu2O nanowires photocathodes[J]. Advanced Functional Materials, 2022, 32(8): 2109600. doi: 10.1002/adfm.202109600 [9] YANG Q, BAO X, LI Z Y, et al. Visible-light-enhanced Cr (VI) reduction and bioelectricity generation at MXene photocathode in photoelectrocatalytic microbial fuel cells[J]. Journal of Water Process Engineering, 2022, 45: 102454. doi: 10.1016/j.jwpe.2021.102454 [10] ROY S. Photocatalytic materials for reduction of nitroarenes and nitrates[J]. The Journal of Physical Chemistry C, 2020, 124(52): 28345-28358. doi: 10.1021/acs.jpcc.0c07363 [11] JIANG C S, ZHANG M Y, DONG G J, et al. Photocatalytic nitrate reduction by a non-metal catalyst h-BN: Performance and mechanism[J]. Chemical Engineering Journal, 2022, 429: 132216. doi: 10.1016/j.cej.2021.132216 [12] SHI H L, LI C H, WANG L, et al. Selective reduction of nitrate into N2 by novel Z-scheme NH2-MIL-101(Fe)/BiVO4 heterojunction with enhanced photocatalytic activity[J]. Journal of Hazardous Materials, 2022, 424(Pt D): 127711. [13] 曹跃辉, 郭珊, 肖毓达, 等. Ag/BiOBr 材料的制备及其光催化还原硝酸盐氮[J]. 环境化学, 2023, 42(10): 3523-3533. doi: 10.7524/j.issn.0254-6108.2022043001 CAO Y H, GUO S, XIAO Y D, et al. Preparation of Ag/BiOBr and photocatalytic reduction of nitrate[J]. Environmental Chemistry, 2023, 42 (10): 3523-3533(in Chinese). doi: 10.7524/j.issn.0254-6108.2022043001
[14] SOARES O S G P, PEREIRA M F R, ÓRFÃO J J M, et al. Photocatalytic nitrate reduction over Pd-Cu/TiO2[J]. Chemical Engineering Journal, 2014, 251: 123-130. doi: 10.1016/j.cej.2014.04.030 [15] ZHENG R, LI C H, HUANG K L, et al. TiO2/Ti3C2 intercalated with g-C3N4 nanosheets as 3D/2D ternary heterojunctions photocatalyst for the enhanced photocatalytic reduction of nitrate with high N2 selectivity in aqueous solution[J]. Inorganic Chemistry Frontiers, 2021, 8(10): 2518-2531. doi: 10.1039/D1QI00001B [16] LI X, ZHANG M Y, FENG J, et al. Electrostatic self-assembly to form unique LiNbO3/ZnS core-shell structure for photocatalytic nitrate reduction enhancement[J]. Journal of Colloid and Interface Science, 2022, 607: 1323-1332. doi: 10.1016/j.jcis.2021.09.069 [17] LI X, WANG S, AN H Z, et al. Enhanced photocatalytic reduction of nitrate enabled by Fe-doped LiNbO3 materials in water: Performance and mechanism[J]. Applied Surface Science, 2021, 539: 148257. doi: 10.1016/j.apsusc.2020.148257 [18] HOU Z A, CHU J F, LIU C, et al. High efficient photocatalytic reduction of nitrate to N2 by Core-shell Ag/SiO2@cTiO2 with synergistic effect of light scattering and surface plasmon resonance[J]. Chemical Engineering Journal, 2021, 415: 128863. doi: 10.1016/j.cej.2021.128863 [19] SHAO S, ZHANG J, LI L K, et al. Visible-light-driven photocatalytic N2 fixation to nitrates by 2D/2D ultrathin BiVO4 nanosheet/rGO nanocomposites[J]. Chemical Communications, 2022, 58(13): 2184-2187. doi: 10.1039/D1CC06750H [20] PATNAIK S, SAHOO D P, PARIDA K. Recent advances in anion doped g-C3N4 photocatalysts: A review[J]. Carbon, 2021, 172: 682-711. doi: 10.1016/j.carbon.2020.10.073 [21] ISMAEL M. A review on graphitic carbon nitride (g-C3N4) based nanocomposites: Synthesis, categories, and their application in photocatalysis[J]. Journal of Alloys and Compounds, 2020, 846: 156446. doi: 10.1016/j.jallcom.2020.156446 [22] ZHANG C, LI Y, SHUAI D M, et al. Graphitic carbon nitride (g-C3N4)-based photocatalysts for water disinfection and microbial control: A review[J]. Chemosphere, 2019, 214: 462-479. doi: 10.1016/j.chemosphere.2018.09.137 [23] WANG X C, MAEDA K, THOMAS A, et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light[J]. Nature Materials, 2009, 8(1): 76-80. doi: 10.1038/nmat2317 [24] QIN J Y, HUO J P, ZHANG P Y, et al. Improving the photocatalytic hydrogen production of Ag/g-C3N4 nanocomposites by dye-sensitization under visible light irradiation[J]. Nanoscale, 2016, 8(4): 2249-2259. doi: 10.1039/C5NR06346A [25] TANG L, FENG C Y, DENG Y C, et al. Enhanced photocatalytic activity of ternary Ag/g-C3N4/NaTaO3 photocatalysts under wide spectrum light radiation: The high potential band protection mechanism[J]. Applied Catalysis B: Environmental, 2018, 230: 102-114. doi: 10.1016/j.apcatb.2018.02.031 [26] GE L, HAN C C, LIU J, et al. Enhanced visible light photocatalytic activity of novel polymeric g-C3N4 loaded with Ag nanoparticles[J]. Applied Catalysis A: General, 2011, 409/410: 215-222. doi: 10.1016/j.apcata.2011.10.006 [27] BAI X J, ZONG R L, LI C X, et al. Enhancement of visible photocatalytic activity via Ag@C3N4 core-shell plasmonic composite[J]. Applied Catalysis B: Environmental, 2014, 147: 82-91. doi: 10.1016/j.apcatb.2013.08.007 [28] LI Z J, WANG J H, ZHU K X, et al. Ag/g-C3N4 composite nanosheets: synthesis and enhanced visible photocatalytic activities[J]. Materials Letters, 2015, 145: 167-170. doi: 10.1016/j.matlet.2015.01.058 [29] MENG Y L, SHEN J, CHEN D, et al. Photodegradation performance of methylene blue aqueous solution on Ag/g-C3N4 catalyst[J]. Rare Metals, 2011, 30(1): 276-279. [30] VARAPRAGASAM S J P, ANDRIOLO J M, SKINNER J L, et al. Photocatalytic reduction of aqueous nitrate with hybrid Ag/g-C3N4 under ultraviolet and visible light[J]. ACS Omega, 2021, 6(50): 34850-34856. doi: 10.1021/acsomega.1c05523 [31] GROENEWOLT M, ANTONIETTI M. Synthesis of g-C3N4 nanoparticles in mesoporous silica host matrices[J]. Advanced Materials, 2005, 17(14): 1789-1792. doi: 10.1002/adma.200401756 [32] SUN Y J, XIONG T, NI Z L, et al. Improving g-C3N4 photocatalysis for NOx removal by Ag nanoparticles decoration[J]. Applied Surface Science, 2015, 358: 356-362. doi: 10.1016/j.apsusc.2015.07.071 [33] ZHOU C Y, LAI C, HUANG D L, et al. Highly porous carbon nitride by supramolecular preassembly of monomers for photocatalytic removal of sulfamethazine under visible light driven[J]. Applied Catalysis B: Environmental, 2018, 220: 202-210. doi: 10.1016/j.apcatb.2017.08.055 [34] XIN G, MENG Y L. Pyrolysis synthesized g-C3N4 for photocatalytic degradation of methylene blue[J]. Journal of Chemistry, 2013, 2013: 1-5. [35] KHARLAMOV A, BONDARENKO M, KHARLAMOVA G, et al. Features of the synthesis of carbon nitride oxide(g-C3N4)O at urea pyrolysis[J]. Diamond and Related Materials, 2016, 66: 16-22. doi: 10.1016/j.diamond.2016.03.012 [36] DAI H Z, GAO X C, LIU E Z, et al. Synthesis and characterization of graphitic carbon nitride sub-microspheres using microwave method under mild condition[J]. Diamond and Related Materials, 2013, 38: 109-117. doi: 10.1016/j.diamond.2013.06.012 [37] FU Y S, HUANG L L T, ZHANG L L, et al. Ag/g-C3N4 catalyst with superior catalytic performance for the degradation of dyes: a borohydride-generated superoxide radical approach[J]. Nanoscale, 2015, 7(32): 13723-13733. doi: 10.1039/C5NR03260A [38] NAGAJYOTHI P C, PANDURANGAN M, VATTIKUTI S V P, et al. Enhanced photocatalytic activity of Ag/g-C3N4 composite[J]. Separation and Purification Technology, 2017, 188: 228-237. doi: 10.1016/j.seppur.2017.07.026 [39] WANG P, HUANG B B, QIN X Y, et al. Ag@AgCl: a highly efficient and stable photocatalyst active under visible light[J]. Angewandte Chemie, 2008, 47(41) : 7931-7933. doi: 10.1002/anie.200802483 [40] FU Y H, LIANG W, GUO J Q, et al. MoS2 quantum dots decorated g-C3N4/Ag heterostructures for enhanced visible light photocatalytic activity[J]. Applied Surface Science, 2018, 430: 234-242. doi: 10.1016/j.apsusc.2017.08.042 [41] ZHANG D F, WANG B Q, GONG X B, et al. Selective reduction of nitrate to nitrogen gas by novel Cu2O-Cu0@Fe0 composite combined with HCOOH under UV radiation[J]. Chemical Engineering Journal, 2019, 359: 1195-1204. doi: 10.1016/j.cej.2018.11.058