-
随着污水厂出水总氮标准的提高(总氮≤10 mg·L−1)[1],传统生物脱氮工艺不能满足低出水总氮排放要求,污水厂面临提标改造需要进行深度脱氮[2]. 当前废水深度脱氮工艺主要有后置反硝化脱氮工艺、反硝化生物滤池、移动床生物膜反应器、人工湿地法等[3]. 新型后置反硝化脱氮工艺具有脱氮效果好的优点,还可利用部分内源性碳源[4],操作管理简便,且降低了运行费用[3,5],并在一定程度上减少剩余污泥的产量,是解决深度脱氮最具发展潜力的技术之一[6].
后置反硝化工艺依赖二级出水中残留的有限碳源实现脱氮的反硝化效率低[7],因此为了保证反硝化脱氮的效率,通常需要在进水中外加碳源[8 − 9]. 传统的外加碳源主要有甲醇、乙醇、乙酸盐、乙酸钠等[10]. 现有研究表明,乙酸钠用做外加碳源时,其反硝化速率远高于外加甲醇等碳源[5],且甲醇和乙醇的投加不仅增加运营成本,乙醇的运输和甲醇对人类健康的影响都存在风险[11]. 此外,碳源为异养反硝化提供电子供体[12],外加碳源的投加量即碳氮比(carbon-to-nitrogen,C/N)会影响电子供体传递[13]和碳源降解,显著影响反硝化脱氮性能[14].
碳源在被后置反硝化工艺中的异养微生物利用和转化产生一部分溶解性有机质(dissolved organic matter,DOM) [7,15],加上进水中原有的难降解天然有机质,出水中含有大量的DOM是出水水质面临的重要议题,出水DOM不仅对后续的高级处理(即膜和高级氧化)产生负面影响,带来膜污染,更严重的会影响反硝化出水水质,具有潜在的环境生态风险[16 − 17]. 污水中DOM的组成和结构非常复杂[18],来源亦尚不清晰,研究发现其可能源于进水原水或者污水处理中的微生物[19],污水生物处理中DOM的组成和特性还会受到微生物生长代谢和工艺运行参数(如,污泥龄(solid retention time,SRT)、C/N比)的影响[20 − 21]. 然而,目前大多数研究主要集中在增强后置反硝化工艺反硝化性能上,对于工艺投加外加碳源进行深度脱氮后,如何影响出水DOM特性,以及关于DOM在工艺中的转化和利用规律鲜有报道. 傅立叶变换离子回旋共振质谱(Fourier transform ion cyclotron resonance mass spectrometry,FT ICR-MS)已被用于DOM的分子特性表征[22],该技术具有超高分辨率和高质量准确度[23],能够解析复杂DOM中的分子组成特征[24]. 在现有研究中,运用FT ICR-MS研究DOM主要集中在雨水、河流、海洋和等自然水体[25 − 26],然而污水处理厂出水DOM对于受纳水体的影响和水生态环境安全风险已逐渐成为人们关注的环境议题[27],因此,有必要运用该技术探究污水后置反硝化工艺中DOM的分子特征及转化规律.
本研究以实际污水中DOM为研究对象,选取常用碳源乙酸钠为外加碳源,采用FT ICR-MS分析了不同C/N比下后置反硝化工艺中DOM的浓度分布和分子转化特征,并结合16S rRNA基因高通量测序考察微生物与DOM分子的关联分析,探究DOM在不同C/N比下后置反硝化工艺中的转化机制,为污水厂后置反硝化工艺中DOM的调控和出水水质改善提供理论支撑.
不同碳氮比下后置反硝化工艺中溶解性有机质的分子特征及其转化机理
Molecular characteristics and transformation mechanism of dissolved organic matter in post-denitrification process at different carbon-to-nitrogen ratios
-
摘要: 污水处理厂后置反硝化工艺中外加碳源的投加量会影响出水溶解性有机质(DOM)的特性,从而影响后置反硝化的处理效率和出水水质. 本研究以实际污水中DOM为研究对象,利用傅里叶变换离子回旋共振质谱(FT ICR-MS)开展了不同碳氮比(C/N=3、4、5、6)下后置反硝化工艺中DOM的分子特征及其转化机理研究. 结果表明,在4种C/N下,C/N=5的反应器出水芳香性DOM分子(AImod >0.5)和不饱和程度高的分子(DBE ≥ 4)占比最高,分别为24.72%和97.6%,说明C/N=5时,出水难生物降解程度较高. 通过分子转化分析可知,C/N=5的反应器产生的DOM分子占比(58.35%)最高且不饱和程度较高,去除的分子占比(2.80%)低且不饱和程度较低,再次证实C/N=5的反应器出水相较于C/N=3、4、6的反应器出水DOM分子惰性高,排放至受纳水体环境风险较低. 此外,微生物群落结构及其与DOM的关联分析可知,Proteobacteria在C/N=5的反应器中相对丰度最高,其主导后置反硝化工艺中DOM分子的产生,Planctomycetota、Nitrospirota、Chloroflexi和Gemmatimonadota对DOM分子的去除和产生也具有重要作用. 综上所述,推荐C/N比为5作为后置反硝化工艺中外加碳源的适宜C/N比.
-
关键词:
- 溶解性有机质(DOM) /
- 后置反硝化 /
- 傅里叶变换离子回旋共振质谱(FT ICR-MS) /
- 微生物群落 /
- 污水处理.
Abstract: The dosing of external carbon sources will affect the characteristics of effluent dissolved organic matter (DOM), the treatment efficiency, and effluent quality in the post-denitrification process of wastewater treatment plants. In this study, the molecular characteristics and conversion mechanism of DOM in the real wastewater were investigated by Fourier transform ion cyclotron resonance mass spectrometry (FT ICR-MS) in post-denitrification process at different carbon to nitrogen ratios (C/N=3, 4, 5 and 6). The results showed that the proportion of aromatic DOM molecules (AImod > 0.5, 24.72%) and unsaturated molecules (DBE ≥ 4, 97.6%) in the effluent from the reactor at C/N ratio of 5 were the highest between four reactors. It indicated that DOM molecules at the C/N ratio of 5 were more refractory in the effluent. The transformation of DOM molecular showed that the proportion of produced DOM molecules (58.35%) with high unsaturated index was the highest in the reactor at C/N ratio of 5, and the proportion of removed DOM molecule (2.80%) was lowest with low unsaturated index. This again conformed that the DOM molecular inertness of the effluent from the reactor at C/N ratio of 5 was higher than that from the reactor at C/N ratio of 3, 4, and 6, which is not prone to create environmental risk. In addition, the relationship between microbial community structure and DOM showed that Proteobacteria dominated the production of DOM molecules in the post-denitrification process, which had highest relative abundance from the reactor at C/N ratio of 5. Planctomycetota, Nitrospirota, Chloroflexi and Gemmatimonadota are also important for the removal and production of DOM molecules. In summary, the C/N ratio of 5 is recommended as the appropriate C/N ratio for external carbon source in the post-denitrification process. -
表 1 不同C/N比后置反硝化反应器进水组分及浓度
Table 1. Influent composition and concentration of post-denitrification systems at different C/N ratios
碳氮比
C/N ratios化学需氧量/( mg·L−1)
COD总溶解性氮/( mg·L−1)
TDN硝酸盐/( mg·L−1)
Nitrate亚硝酸盐/( mg·L−1)
Nitrite总磷/( mg·L−1)
TPpH C/N=3 44.3—52.3 14.4—16.9 9.3—12.3 0.04—1.04 0.23—1.86 7.2—8.1 C/N=4 59.6—66.3 14.4—16.9 9.3—12.3 0.04—1.04 0.23—1.86 7.2—8.1 C/N=5 75.8—86.2 14.4—16.9 9.3—12.3 0.04—1.04 0.23—1.86 7.2—8.1 C/N=6 85.6—96.3 14.4—16.9 9.3—12.3 0.04—1.04 0.23—1.86 7.2—8.1 表 2 测试样品FT ICR-MS峰值分配的不同化合物类别的总数和比例
Table 2. Total numbers and proportions of different compound classes assigned to FT ICR-MS peaks of the test effluent samples
样品
Samples稠环多环芳烃
Combustion-derived condensed
polycyclic aromatics多酚类物质
Vascular plant-derived
polyphenols高度不饱和酚类物质
Highly unsaturated and
phenolic compounds脂肪族物质
Aliphatic compounds饱和类物质
Saturated fatty and
carbohydrates进水 1057 (14.63%)1002 (13.87%)5068 (70.15%)97(1.34%) 1(0.01%) C/N=3出水 862(10.85%) 1109 (13.96%)5306 (66.78%)666(8.38%) 3(0.04%) C/N=4出水 704(9.89%) 982(13.8%) 4820 (67.73%)608(8.54%) 3(0.04%) C/N=5出水 899(11.16%) 1148 (14.26%)5314 (66.00%)689(8.56%) 2(0.02%) C/N=6出水 940(10.9%) 1201 (13.93%)5749 (66.66%)731(8.48%) 3(0.03%) 表 3 不同C/N比检测样品中产生、去除和不变的DOM分子的比例(%)
Table 3. The proportion of DOM produced, removed, and shared molecules in test samples at different C/N ratios(%)
样品
Samples产生的
Produced去除的
Removed不变的
SharedC/N=3 24.38 8.86 66.76 C/N=4 47.18 5.07 47.75 C/N=5 58.35 2.80 38.85 C/N=6 24.04 3.73 72.24 表 4 不同C/N比检测样品中DOM的分子水平参数
Table 4. Molecular-level parameters of DOM in test samples at different C/N ratios
分类
Classification样品
SamplesH/Cwa O/Cwa DBEwa AImodwa 产生的
ProducedC/N=3 1.30 0.43 12.2 0.381 C/N=4 1.31 0.45 11.1 0.360 C/N=5 1.30 0.44 14.5 0.393 C/N=6 1.32 0.43 11.7 0.377 去除的
RemovedC/N=3 1.36 0.43 10.8 0.360 C/N=4 1.34 0.44 12.0 0.376 C/N=5 1.34 0.47 10.3 0.364 C/N=6 1.26 0.45 11.5 0.416 不变的
SharedC/N=3 1.27 0.46 10.7 0.323 C/N=4 1.27 0.47 9.8 0.313 C/N=5 1.27 0.47 9.8 0.307 C/N=6 1.28 0.46 10.5 0.301 表 5 不同C/N比检测样品中产生的DOM分子组成
Table 5. The composition of produced DOM in test samples at different C/N ratios
样品
Samples糖类
Carbohydrates稠环芳烃类
Condensed
Aromatics木质素类
Lignin单宁酸类
Tannins蛋白/氨基糖类
Proteins/Amino
Sugars不饱和碳氢化合物
Unsaturated
Hydrocarbons脂质类
LipidsC/N=3 1 296 1292 137 18 92 0 C/N=4 4 364 2322 319 20 101 3 C/N=5 3 586 3157 446 35 167 7 C/N=6 0 268 1372 94 19 101 2 -
[1] 城镇污水处理厂水污染物排放标准(DB11/890-2012)[S]. 北京: 北京市环境保护科学研究院, [2012-05-03]. Discharge standard of water pollutants for municipal wastewater treatment plants (DB11/890-2012)[S]. Beijing:Beijing Municipal Research Institute of Environmental Protection, [2012-05-03] (in Chinese).
[2] KUYPERS M M M, MARCHANT H K, KARTAL B. The microbial nitrogen-cycling network[J]. Nature Reviews Microbiology, 2018, 16(5): 263-276. doi: 10.1038/nrmicro.2018.9 [3] 陈举烽. 污水深度脱氮技术研究进展[J]. 科技与创新, 2022(22): 64-66,69. doi: 10.15913/j.cnki.kjycx.2022.22.018 CHEN J F. Research progress of advanced denitrification technology for wastewater[J]. Science and Technology & Innovation, 2022(22): 64-66,69 (in Chinese). doi: 10.15913/j.cnki.kjycx.2022.22.018
[4] 王慰, 王淑莹, 张琼, 等. 后置缺氧UCT分段进水工艺处理低C/N城市污水[J]. 中国环境科学, 2016, 36(7): 1997-2005. doi: 10.3969/j.issn.1000-6923.2016.07.014 WANG W, WANG S Y, ZHANG Q, et al. Post-anoxic UCT step-feed process in treating municipal wastewater with low C/N ratios[J]. China Environmental Science, 2016, 36(7): 1997-2005 (in Chinese). doi: 10.3969/j.issn.1000-6923.2016.07.014
[5] 薛旭. 污水提标改造中后置反硝化脱总氮工艺技术探讨[J]. 石油化工安全环保技术, 2019, 35(5): 60-65,75. doi: 10.3969/j.issn.1673-8659.2019.05.017 XUE X. Discussion on post-denitrification technology for total nitrogen removal in wastewater upgrading[J]. Petrochemical Safety and Environmental Protection Technology, 2019, 35(5): 60-65,75 (in Chinese). doi: 10.3969/j.issn.1673-8659.2019.05.017
[6] COATS E R, MOCKOS A, LOGE F J. Post-anoxic denitrification driven by PHA and glycogen within enhanced biological phosphorus removal[J]. Bioresource Technology, 2011, 102(2): 1019-1027. doi: 10.1016/j.biortech.2010.09.104 [7] ABUFAYED A A, SCHROEDER E D. Kinetics and stoichiometry of SBR/denitrification with a primary sludge carbon source[J]. Journal (Water Pollution Control Federation), 1986, 58(5): 398-405. [8] MIELCAREK A, RODZIEWICZ J, JANCZUKOWICZ W, et al. The impact of biodegradable carbon sources on nutrients removal in post-denitrification biofilm reactors[J]. Science of the Total Environment, 2020, 720: 137377. doi: 10.1016/j.scitotenv.2020.137377 [9] HU X, WISNIEWSKI K, CZERWIONKA K, et al. Modeling the effect of external carbon source addition under different electron acceptor conditions in biological nutrient removal activated sludge systems[J]. Environmental Science & Technology, 2016, 50(4): 1887-1896. [10] XU Z S, DAI X H, CHAI X L. Effect of different carbon sources on denitrification performance, microbial community structure and denitrification genes[J]. Science of the Total Environment, 2018, 634: 195-204. doi: 10.1016/j.scitotenv.2018.03.348 [11] CAO S B, SUN F Q, LU D, et al. Characterization of the refractory dissolved organic matters (rDOM) in sludge alkaline fermentation liquid driven denitrification: Effect of HRT on their fate and transformation[J]. Water Research, 2019, 159: 135-144. doi: 10.1016/j.watres.2019.04.063 [12] PAN Z L, ZHOU J, LIN Z Y, et al. Effects of COD/TN ratio on nitrogen removal efficiency, microbial community for high saline wastewater treatment based on heterotrophic nitrification-aerobic denitrification process[J]. Bioresource Technology, 2020, 301: 122726. doi: 10.1016/j.biortech.2019.122726 [13] 胡国山, 张建美, 蔡惠军. 碳源、C/N和温度对生物反硝化脱氮过程的影响[J]. 科学技术与工程, 2016, 16(14): 74-77,106. doi: 10.3969/j.issn.1671-1815.2016.14.015 HU G S, ZHANG J M, CAI H J. Effect of carbon source, C/N ratio and temperature on biological denitrification process[J]. Science Technology and Engineering, 2016, 16(14): 74-77,106 (in Chinese). doi: 10.3969/j.issn.1671-1815.2016.14.015
[14] 孙洪伟, 郭英, 尤永军, 等. 不同碳氮比(C/N)条件下驯化微生物的反硝化特性[J]. 环境化学, 2014, 33(5): 770-775. doi: 10.7524/j.issn.0254-6108.2014.05.001 SUN H W, GUO Y, YOU Y J, et al. Denitrification characteristic of microbial population tamed at different C/N ratios[J]. Environmental Chemistry, 2014, 33(5): 770-775 (in Chinese). doi: 10.7524/j.issn.0254-6108.2014.05.001
[15] CHANG N B, WEN D, McKENNA A M, et al. The impact of carbon source as electron donor on composition and concentration of dissolved organic nitrogen in biosorption-activated media for stormwater and groundwater Co-treatment[J]. Environmental Science & Technology, 2018, 52(16): 9380-9390. [16] PENG J D, HUANG H, ZHONG Y, et al. Transformation of dissolved organic matter during biological wastewater treatment and relationships with the formation of nitrogenous disinfection byproducts[J]. Water Research, 2022, 222: 118870. doi: 10.1016/j.watres.2022.118870 [17] GUPTA K, CHELLAM S. Revealing the mechanisms of irreversible fouling during microfiltration–The role of feedwater composition[J]. Journal of Environmental Chemical Engineering, 2022, 10(2): 107362. doi: 10.1016/j.jece.2022.107362 [18] MICHAEL-KORDATOU I, MICHAEL C, DUAN X, et al. Dissolved effluent organic matter: Characteristics and potential implications in wastewater treatment and reuse applications[J]. Water Research, 2015, 77: 213-248. doi: 10.1016/j.watres.2015.03.011 [19] ANTONY R, GRANNAS A M, WILLOUGHBY A S, et al. Origin and sources of dissolved organic matter in snow on the East Antarctic ice sheet[J]. Environmental Science & Technology, 2014, 48(11): 6151-6159. [20] HU H D, LIAO K W, SHI Y J, et al. Effect of solids retention time on effluent dissolved organic nitrogen in the activated sludge process: Studies on bioavailability, fluorescent components, and molecular characteristics[J]. Environmental Science & Technology, 2018, 52(6): 3449-3455. [21] HU H D, LIAO K W, WANG J F, et al. Effect of influent carbon-to-nitrogen ratios on the production and bioavailability of microorganism-derived dissolved organic nitrogen (mDON) in activated sludge systems[J]. ACS ES& T Water, 2021, 1(9): 2037-2045. [22] ANTONY R, WILLOUGHBY A S, GRANNAS A M, et al. Molecular insights on dissolved organic matter transformation by supraglacial microbial communities[J]. Environmental Science & Technology, 2017, 51(8): 4328-4337. [23] PHUNGSAI P, KURISU F, KASUGA I, et al. Changes in dissolved organic matter composition and disinfection byproduct precursors in advanced drinking water treatment processes[J]. Environmental Science & Technology, 2018, 52(6): 3392-3401. [24] BROOKER M R, LONGNECKER K, KUJAWINSKI E B, et al. Discrete organic phosphorus signatures are evident in pollutant sources within a Lake Erie tributary[J]. Environmental Science & Technology, 2018, 52(12): 6771-6779. [25] 郭旭晶, 彭涛, 王月, 等. 湖泊沉积物孔隙水溶解性有机质组成与光谱特性[J]. 环境化学, 2013, 32(1): 79-84. doi: 10.7524/j.issn.0254-6108.2013.01.012 GUO X J, PENG T, WANG Y, et al. Study on the composition and spectral properties of dissolved organic matter extracted from lake sediment pore water in lake[J]. Environmental Chemistry, 2013, 32(1): 79-84 (in Chinese). doi: 10.7524/j.issn.0254-6108.2013.01.012
[26] SEIDEL M, VEMULAPALLI S P B, MATHIEU D, et al. Marine dissolved organic matter shares thousands of molecular formulae yet differs structurally across major water masses[J]. Environmental Science & Technology, 2022, 56(6): 3758-3769. [27] CAI M H, WU Y P, JI W X, et al. Characterizing property and treatability of dissolved effluent organic matter using size exclusion chromatography with an array of absorbance, fluorescence, organic nitrogen and organic carbon detectors[J]. Chemosphere, 2020, 243: 125321. doi: 10.1016/j.chemosphere.2019.125321 [28] LU H J, CHANDRAN K, STENSEL D. Microbial ecology of denitrification in biological wastewater treatment[J]. Water Research, 2014, 64: 237-254. doi: 10.1016/j.watres.2014.06.042 [29] 魏百惠. 反硝化过程中N2O积累特性及影响因素探究[D]. 哈尔滨: 哈尔滨工业大学, 2019. WEI B H. Study on N2O accumulation characteristics and influencing factors in denitrification process[D]. Harbin: Harbin Institute of Technology, 2019 (in Chinese).
[30] 国家环境保护总局《水和废水监测分析方法》编委会. 水和废水监测分析方法[M]. 北京: 中国环境科学出版社, 2002. EPA of China. Water and wastewater monitoring analysis method, fourth ed[M]. Beijing: Chinese Environment Science Publisher, 2002 (in Chinese).
[31] LIAO K W, HU H D, REN H Q. Combined influences of process parameters on microorganism-derived dissolved organic nitrogen (mDON) formation at low temperatures: Multivariable statistical and systematic analysis[J]. Science of the Total Environment, 2020, 744: 140732. doi: 10.1016/j.scitotenv.2020.140732 [32] ZHANG B L, SHAN C, HAO Z N, et al. Transformation of dissolved organic matter during full-scale treatment of integrated chemical wastewater: Molecular composition correlated with spectral indexes and acute toxicity[J]. Water Research, 2019, 157: 472-482. doi: 10.1016/j.watres.2019.04.002 [33] CHENG C, GENG J J, ZHOU Z, et al. A novel anoxic/aerobic process coupled with micro-aerobic/anaerobic side-stream reactor filled with packing carriers for in situ sludge reduction[J]. Journal of Cleaner Production, 2021, 311: 127192. doi: 10.1016/j.jclepro.2021.127192 [34] 于淼, 谈思捷, 马国胜, 等. 新型后置缺氧工艺处理农村低C/N废水的影响探究[J]. 水处理技术, 2022, 48(8): 93-97. doi: 10.16796/j.cnki.1000-3770.2022.08.019 YU M, TAN S J, MA G S, et al. Study on treatment of rural low C/N wastewater by new post anoxic process[J]. Technology of Water Treatment, 2022, 48(8): 93-97 (in Chinese). doi: 10.16796/j.cnki.1000-3770.2022.08.019
[35] HOW S W, CHUA A S M, NGOH G C, et al. Enhanced nitrogen removal in an anoxic-oxic-anoxic process treating low COD/N tropical wastewater: Low-dissolved oxygen nitrification and utilization of slowly-biodegradable COD for denitrification[J]. Science of the Total Environment, 2019, 693: 133526. doi: 10.1016/j.scitotenv.2019.07.332 [36] ZHANG Y, WANG J, TAO J, et al. Concentrations of dissolved organic matter and methane in lakes in Southwest China: Different roles of external factors and in-lake biota[J]. Water Research, 2022, 225: 119190. doi: 10.1016/j.watres.2022.119190 [37] ZHANG B L, WANG X N, FANG Z Y, et al. Unravelling molecular transformation of dissolved effluent organic matter in UV/H2O2, UV/persulfate, and UV/chlorine processes based on FT-ICR-MS analysis[J]. Water Research, 2021, 199: 117158. doi: 10.1016/j.watres.2021.117158 [38] DOMINGO-FÉLEZ C, SMETS B F. Modeling denitrification as an electric circuit accurately captures electron competition between individual reductive steps: The activated sludge model-electron competition model[J]. Environmental Science & Technology, 2020, 54(12): 7330-7338. [39] HAO Z N, YIN Y G, CAO D, et al. Probing and comparing the photobromination and photoiodination of dissolved organic matter by using ultra-high-resolution mass spectrometry[J]. Environmental Science & Technology, 2017, 51(10): 5464-5472. [40] KELLERMAN A M, DITTMAR T, KOTHAWALA D N, et al. Chemodiversity of dissolved organic matter in lakes driven by climate and hydrology[J]. Nature Communications, 2014, 5: 3804. doi: 10.1038/ncomms4804 [41] ZHANG X N, SUN Y L, MA F, et al. In-situ utilization of soluble microbial product (SMP) cooperated with enhancing SMP-dependent denitrification in aerobic-anoxic sequencing batch reactor[J]. Science of the Total Environment, 2019, 693: 133558. doi: 10.1016/j.scitotenv.2019.07.364 [42] XU J, SHENG G P, LUO H W, et al. Evaluating the influence of process parameters on soluble microbial products formation using response surface methodology coupled with grey relational analysis[J]. Water Research, 2011, 45(2): 674-680. doi: 10.1016/j.watres.2010.08.032 [43] KOCH B P, DITTMAR T. From mass to structure: An aromaticity index for high-resolution mass data of natural organic matter[J]. Rapid Communications in Mass Spectrometry, 2016, 30(1): 250. doi: 10.1002/rcm.7433 [44] TANG G, LI B R, ZHANG B W, et al. Dynamics of dissolved organic matter and dissolved organic nitrogen during anaerobic/anoxic/oxic treatment processes[J]. Bioresource Technology, 2021, 331: 125026. doi: 10.1016/j.biortech.2021.125026 [45] HUGHEY C A, HENDRICKSON C L, RODGERS R P, et al. Kendrick mass defect spectrum: A compact visual analysis for ultrahigh-resolution broadband mass spectra[J]. Analytical Chemistry, 2001, 73(19): 4676-4681. doi: 10.1021/ac010560w [46] EVANS W C. Biochemistry of the bacterial catabolism of aromatic compounds in anaerobic environments[J]. Nature, 1977, 270(5632): 17-22. doi: 10.1038/270017a0 [47] CHEN H, TSAI K P, LIU Y N, et al. Characterization of dissolved organic matter from wildfire-induced Microcystis aeruginosa blooms controlled by copper sulfate as disinfection byproduct precursors using APPI (-) and ESI (-) FT-ICR MS[J]. Water Research, 2021, 189: 116640. doi: 10.1016/j.watres.2020.116640 [48] 何伟, 白泽琳, 李一龙, 等. 溶解性有机质特性分析与来源解析的研究进展[J]. 环境科学学报, 2016, 36(2): 359-372. doi: 10.13671/j.hjkxxb.2015.0117 HE W, BAI Z L, LI Y L, et al. Advances in the characteristics analysis and source identification of the dissolved organic matter[J]. Acta Scientiae Circumstantiae, 2016, 36(2): 359-372 (in Chinese). doi: 10.13671/j.hjkxxb.2015.0117
[49] MEYERS-SCHULTE K J, HEDGES J I. Molecular evidence for a terrestrial component of organic matter dissolved in ocean water[J]. Nature, 1986, 321(6065): 61-63. doi: 10.1038/321061a0 [50] HU H D, LIAO K W, GENG J J, et al. Removal characteristics of dissolved organic nitrogen and its bioavailable portion in a postdenitrifying biofilter: Effect of the C/N ratio[J]. Environmental Science & Technology, 2018, 52(2): 757-764. [51] CZERWIONKA K. Influence of dissolved organic nitrogen on surface waters[J]. Oceanologia, 2016, 58(1): 39-45. doi: 10.1016/j.oceano.2015.08.002 [52] JIA L P, JIANG B H, HUANG F, et al. Nitrogen removal mechanism and microbial community changes of bioaugmentation subsurface wastewater infiltration system[J]. Bioresource Technology, 2019, 294: 122140. doi: 10.1016/j.biortech.2019.122140 [53] HUANG S F, CHEN M, DIAO Y M, et al. Dissolved organic matter acting as a microbial photosensitizer drives photoelectrotrophic denitrification[J]. Environmental Science & Technology, 2022, 56(7): 4632-4641. [54] WANG L Y, LIN Y, YE L, et al. Microbial roles in dissolved organic matter transformation in full-scale wastewater treatment processes revealed by reactomics and comparative genomics[J]. Environmental Science & Technology, 2021, 55(16): 11294-11307. [55] WANG H S, CHEN N, FENG C P, et al. Research on efficient denitrification system based on banana peel waste in sequencing batch reactors: Performance, microbial behavior and dissolved organic matter evolution[J]. Chemosphere, 2020, 253: 126693. doi: 10.1016/j.chemosphere.2020.126693 [56] 陈翠忠, 李俊峰, 刘生宝, 等. 间歇式活性污泥法(SBR)系统碳氮比对同步硝化反硝化微生物群落分布及脱氮效能的影响[J]. 环境化学, 2021, 40(11): 3598-3607. doi: 10.7524/j.issn.0254-6108.2020070804 CHEN C Z, LI J F, LIU S B, et al. Effect of C/N ratio on the microbial community of simultaneous nitrification and denitrification(SND) and the biological nitrogen removal in sequencing batch reactor(SBR)[J]. Environmental Chemistry, 2021, 40(11): 3598-3607 (in Chinese). doi: 10.7524/j.issn.0254-6108.2020070804
[57] CHEN C, XU X J, XIE P, et al. Pyrosequencing reveals microbial community dynamics in integrated simultaneous desulfurization and denitrification process at different influent nitrate concentrations[J]. Chemosphere, 2017, 171: 294-301. doi: 10.1016/j.chemosphere.2016.11.159 [58] FENG L J, CHEN K, HAN D D, et al. Comparison of nitrogen removal and microbial properties in solid-phase denitrification systems for water purification with various pretreated lignocellulosic carriers[J]. Bioresource Technology, 2017, 224: 236-245. doi: 10.1016/j.biortech.2016.11.002 [59] 王东尔, 卢先春, 庞洪涛, 等. 基于生物膜耦合AOA的城镇生活污水深度脱氮工艺中试研究[J]. 环境工程学报, 2022, 16(3): 837-845. doi: 10.12030/j.cjee.202111154 WANG D E, LU X C, PANG H T, et al. A pilot-scale study of hybrid system of biofilm and anoxic-oxic-anoxic process for enhanced nitrogen removal of municipal wastewater[J]. Chinese Journal of Environmental Engineering, 2022, 16(3): 837-845 (in Chinese). doi: 10.12030/j.cjee.202111154
[60] AL ALI A A, NADDEO V, HASAN S W, et al. Correlation between bacterial community structure and performance efficiency of a full-scale wastewater treatment plant[J]. Journal of Water Process Engineering, 2020, 37: 101472. doi: 10.1016/j.jwpe.2020.101472 [61] SI Z H, SONG X S, WANG Y H, et al. Intensified heterotrophic denitrification in constructed wetlands using four solid carbon sources: Denitrification efficiency and bacterial community structure[J]. Bioresource Technology, 2018, 267: 416-425. doi: 10.1016/j.biortech.2018.07.029 [62] HU R T, ZHENG X L, ZHENG T Y, et al. Effects of carbon availability in a woody carbon source on its nitrate removal behavior in solid-phase denitrification[J]. Journal of Environmental Management, 2019, 246: 832-839. [63] WANG H S, FENG C P, DENG Y. Effect of potassium on nitrate removal from groundwater in agricultural waste-based heterotrophic denitrification system[J]. Science of the Total Environment, 2020, 703: 134830. doi: 10.1016/j.scitotenv.2019.134830