-
人类文明的发展史, 也是一部与病原微生物的斗争史[1]. 历史上曾多次出现过由病原微生物导致的重大传染病事件. 古希腊“雅典大瘟疫”导致雅典在战争中失败, 古希腊文明由盛转衰[2 − 3]. 古罗马“安东尼瘟疫”, 夺取了数百万人的生命[4]. 拜占庭“查士丁尼瘟疫”持续了将近1年时间[5]. 欧洲黑死病夺走了
2500 万欧洲人的性命, 占当时欧洲总人口的1/3[6]. 20世纪末的埃博拉病毒导致了当今世界上最致命的病毒性出血热[7 − 9]. 新世纪以来, 人类再次遭遇了2003年SARS和2019年新型冠状病毒肺炎疫情, 两次疫情均给人类健康和社会经济发展带来了不可估量的重创, 从某种意义上讲, 甚至影响了人类发展的历史进程[10 − 13]. 因此, 如何防控重大新发突发传染病、动植物疫情, 应对生物恐怖及生物战导致的病原微生物大规模传播是人类面临的巨大挑战.病原微生物的传播过程有三个要素: 传染源、传播途径、易感人群, 其传播方式包括两大类, 一是亲代关系之间的纵向垂直传播, 如胎盘传播、产道传播等, 二是群体或个体之间的横向水平传播, 如水媒传播、接触传播、空气传播等[14]. 常见病原微生物类型如表1所示, 相较于纵向垂直传播, 横向水平传播的方式更为复杂和广泛. 病原微生物可以通过水媒进行传播, 人饮用不清洁的水体后可以引起霍乱、腹泻、疟疾等疾病, 一般通过过滤、煮沸等方法可以截留和杀死水体中绝大多数病原微生物. 而对于空气传播而言, 由于人90%的活动时间均在室内, 一些病原微生物即使存在浓度非常低, 也能随人体的呼吸或接触活动进入体内, 引发感染. 如图1所示, 通风不畅或无法通风会导致病原微生物难以稀释, 加之以飞沫、气溶胶形式在空气中传播的病原微生物较难控制, 因此极易形成大规模病原微生物感染事件, 如2003年的SARS病毒和2019年的新型冠状病毒均通过空气传播, 并导致了严峻的疫情[15 − 18]. 显然, 切断宿主间病原微生物的传播途径是防控病原微生物感染事件的重要途径之一, 而对空气和物表进行消毒可以有效地阻断病原微生物的传播[19 − 22]. 利用空气消毒技术, 可以破坏病原微生物细胞膜或细胞壁, 改变细胞的通透性, 还能作用于DNA、RNA、磷脂、蛋白质和酶等物质, 影响其复制、转录和翻译等活动, 进而导致病原微生物灭活[23 − 26]. 在生物科学技术飞速发展和生物安全问题日趋严峻的当下, 以这些技术为核心的空气消毒器在家庭生活、社会运转中的作用越来越重[27 − 29].
防控经由空气传播病原微生物大规模传染的关键在于加强空气消毒技术及设备研发, 尽管各大企业纷纷加入空气消毒器市场, 但单一消毒手段和模式存在消毒不彻底、副产物残留等问题, 如Lanao等[30]在研究中使用O3和H2O2一起处理产气芽孢杆菌, 3.6 mg·L−1 O3处理58.2 s后达到99.99%的杀菌效率, 而2.7 mg O3与1.14 mmol·L−1 H2O2共同处理, 仅45 s就达到了99.99%的杀菌效率. Balagna等[31]用银纳米簇/硅涂层复合在玻璃、金属纤维空气过滤器上来处理呼吸道合胞病毒(RSV)和A型流感病毒(FluVA), 结果表明相较于无涂层的玻璃纤维过滤器, 有涂层的玻璃纤维过滤器处理后, RSV病毒滴度减少近3个数量级, FluVA病毒滴度减少约两个数量级, 而传统空气过滤滤芯仅能实现物理吸附和截留. 而He等[32]在综述中阐明, 与贵金属或碳纳米材料复合后, TiO2的光催化剂性可以改进. 这是因为贵金属负载后能诱导产生表面等离子体共振效应和肖特基势垒, 而具有可调控结构的碳纳米材料可以提高复合材料的载流子分离性能, 提升材料催化性能. 尽管一些技术的处理性能优异, 但其本身或副产物残留问题易对人造成危害, 如使用臭氧消毒, 其残留问题会导致眼睛刺激、头痛以及呼吸道疾病和心血管问题的加剧[33 − 34]. 使用化学消毒剂过程中试剂泄露、使用后未处理排放或化学残留等, 都会对人类和动物健康产生副作用, 同时破坏生态环境平衡[35]. 而高压放电技术过程中也可能会产生臭氧等副产物, 危害人体健康[36 − 37]. 因此, 研发智慧化、多因子、高效能消毒灭菌材料及设备对疫情防控、经济发展、社会稳定和国家生物安全体系的构建具有重大意义.
本文分析了病原微生物的危害及消毒策略, 综述了各种消毒技术的消毒特点及其作用机理, 阐述了空气消毒器的研发现状及未来发展趋势.
室内空气病原微生物消毒技术与设备研究进展
Advance of indoor air pathogenic disinfection technology and equipment
-
摘要: 以飞沫、气溶胶形式在空气中传播的病原微生物较难控制,极易形成大规模病原微生物感染事件,如2003年的SARS病毒和2019年的新型冠状病毒均通过空气传播,导致了严峻的疫情. 而对空气、物表面进行消毒,能有效阻断经空气传播病原微生物的大规模感染. 本文综述了近年来空气消毒技术及设备的最新进展,指出了现有技术和产品存在单一技术效率有限、催化剂活性不稳定、生物毒性尚不清晰、系统智能化程度低、新兴技术产业化难等不足和弊端,提出了消杀设备未来的研发趋势在于实时监测、经济耐用、高效催化和强力净化. 总的来说,单一功能的空气消毒机无法对空气中的病原微生物进行彻底、高效的消杀,开发智慧化、多因子、多功能的高效能消毒材料及装备是未来的重要发展方向.Abstract: It is difficult to control the pathogenic microorganisms that are transmitted to air in the form of droplets and aerosols, and which could easily cause large-scale pathogenic microbial infections. For example, the SARS-CoV in 2003 and the SARS-CoV-2 in 2019 were transmitted through air and resulted in a severe epidemic. Disinfecting the air and the surface of objects can effectively block the large-scale infection of airborne pathogenic microorganisms. This paper summarizes the latest developments in air disinfection technology and equipment in recent years, and points out that existing technologies and products have many shortcomings, for instance, a single technology with limited efficiency, unstable catalytic activity, unclear biological toxicity, low degree of system intelligence, and difficulties in the industrialization of emerging technologies, etc. The future research and development trend on air disinfection is proposed to develop equipment with real-time monitoring, economical and durable, efficient catalysis and powerful purification. In general, the single-function air disinfecting machine could not eliminate pathogenic microorganisms in the air completely and efficiently. Therefore, the development of intelligent, multi-factor and high-efficient disinfection materials and equipment is a significant and considerable development direction in the future.
-
Key words:
- pathogenic microorganisms /
- air disinfection /
- research progress /
- development tendency.
-
表 1 常见病原微生物
Table 1. Common pathogenic microorganisms
病原体类型
Type微生物结构
Structure感染症状
Symptoms常见病原微生物
Microorganisms致死温度
Lethal Temperature真菌 真核细胞型 皮肤粘膜疾病 酵母菌、毛霉菌、曲霉菌等 60 ℃以上可部分致死 细菌 原核细胞型 化脓、各类感染等 大肠杆菌、结核杆菌、链球菌等 大部分100 ℃时死亡 病毒 非细胞型 肠道感染等 新冠肺炎病毒、乙肝病毒等 60 ℃以上可部分致死 螺旋体 原核细胞型 梅毒, 回归热等 梅毒螺旋体、雅司螺旋体等 40 ℃以上可部分致死 放线菌 原核细胞型 骨炎、颅骨髓炎等 灰色链霉菌、金霉素链霉菌等 50 ℃以上可多数致死 衣原体 原核细胞型 生殖感染、沙眼等 肺炎衣原体、沙眼衣原体等 50 ℃以上可多数致死 支原体 原核细胞型 肺炎、生殖感染等 肺炎支原体、人型支原体等 40 ℃以上可多数致死 立克次氏体 原核细胞型 斑疹伤寒等 普氏立克次氏体、汉赛巴通体等 60 ℃以上可部分致死 表 2 不同消毒技术的特点
Table 2. Characteristics of different disinfection technologies
消毒技术
Techno-logies消毒
能力
Ability消毒机理
Mechanism产品功耗Consu-mption 有无耗材
Consu-mables残/副产物
By-products产物危害
Products
hazards处理对象
Processing objects处理范围
Processing
scope参考文献
References细胞壁/膜
CW/CM核酸
Nuclein蛋白质
Protein1 — — — — 高 √ — 无 空气 过滤区 [38 − 39] 2 强 √ √ √ 低 — 少量O3 强 空气/物表 辐照区 [24, 40 − 41] 3 — — — — 低 — 少量O3 中 空气 电场区 [42] 4 强 √ √ √ 低 — 残留物 强 空气/物表 大 [23, 43] 5 强 √ √ √ 无 — 残留物 强 空气/物表 大 [44 − 45] 6 强 √ √ √ 高 — O3等 中 空气/物表 放电区 [46 − 47] 7 较强 √ √ √ 低 √ — 低 空气/物表 催化区 [48 − 49] 8 较强 √ √ √ 低 √ — 低 空气/物表 催化区 [50 − 51] 9 中 √ — — 低 √ — 低 空气/物表 催化区 [52] 注:1. 高效过滤;2. 紫外消毒;3. 静电吸附;4. 臭氧消毒;5. 消毒剂雾化;6. 高压放电技术;7. 光催化技术;8. 纳米银技术;9. 溶菌酶技术.
1. Efficient filtration; 2. Ultraviolet disinfection; 3. Electrostatic adsorption; 4. Ozone disinfection; 5. Disinfectant atomization technologies; 6. High-voltage discharge technology; 7. Photocatalysis technology; 8. Nano-silver technology 9. Lysozyme.产品类型
Product type不同时间的病毒灭活TCID50
Virus inactivation TCID50 at different times有机物浓度/%
Concentration of organics作用时间/ min
React time方法
methods0.5T T 1. 5T 0.4 g·L−1 次氯酸钠 5.22 5.22 5.22 3. 0 1 悬液法 0. 5 g·L−1 二氯异氰尿酸钠 4. 28 4.28 4. 28 0. 3 1 悬液法 0. 1 g·L−1 次氯酸 4. 22 4. 22 4. 22 0. 3 1 悬液法 70%—80% 乙醇(V/V) 4. 28 4. 28 4. 28 3. 0 1 载体法 (0. 13土0. 013)% 过氧化氢(W/V) + (80+5)% 乙醇(V/V) 3. 00 4. 00 4. 11 0. 3 1 载体法 0. 1 g·L−1 二氧化氯 3. 28 4. 00 4. 16 3. 0 1 悬液法 1% 过氧化氢 4. 22 4. 22 4. 22 3. 0 1 悬液法 0.36% 过氧乙酸 4. 94 4. 94 4. 94 0. 3 10 悬液法 0.2 g·L−1 单过硫酸氢钾复合盐 4. 22 4. 22 4. 22 3. 0 10 载体法 1.12 g·L−1 有效碘(聚维酮碘) 3. 34 4. 00 4. 39 3. 0 1 载体法 (2. 4+0.24) g·L−1 复合季铵盐 3. 11 4. 05 4. 17 0. 3 40 载体法 0.2%—0.3% 苯扎氯铵+
15 000—25 000 U·mL−1 溶菌酶1.17 1. 40 1. 40 0. 3 20 载体法 0.1 g·L−1 银离子 2.33 2. 66 2. 77 3. 0 30 载体法 0.4% 聚六亚甲基双胍 2.27 2.50 3. 44 0. 3 30 载体法 表 4 不同厂商空气消毒器的特点
Table 4. Characteristics of air sterilizers of different manufacturers
品牌
Brand应用技术
Technology目标污染
Targets维护方式
Maintenance method适用场所
Places功能参数(CADR)
Parameters(CADR)A 18 ①②③④ 更换耗材, 除尘 ACD s: 1100 m3·h−1、g: 400 m3·h−1B 146 ①②③④ 更换耗材, 除尘 A s: 302 m3·h−1、g: 302 m3·h−1 C 13 ②③④ 除尘 AB s: 850 m3·h−1、g: 500 m3·h−1 D 12 ②③④ 更换耗材, 除尘 A s: 666 m3·h−1、g: 548 m3·h−1 E 18 ①②③④ 更换耗材, 除尘 A s: 700 m3·h−1、g: 400 m3·h−1 F 16 ①③④ 更换耗材, 除尘 A s: 405 m3·h−1、g: 144 m3·h−1 G 168 ①②③④ 更换耗材, 除尘 AC s: 330 m3·h−1、g: 150 m3·h−1 H 136 ①②③④ 更换耗材, 除尘 AB s: 430 m3·h−1、g: 270 m3·h−1 I 168 ①②③④ 更换耗材, 除尘 AC s: 800 m3·h−1、g: 550 m3·h−1 J 17 ①②③④ 更换耗材, 除尘 AC s: 684 m3·h−1、g: 400 m3·h−1 K 139 ①②③④ 更换耗材, 除尘 A s: 390 m3·h−1、g: 243 m3·h−1 L 5 ③④ 除尘 CD — 应用技术: 1. 高效过滤;2. 紫外消毒;3. 静电吸附;4. 臭氧消毒;5. 消毒剂雾化;6. 高压放电技术;7. 光催化技术;8. 纳米银技术;9. 溶菌酶技术. 目标污染物: ①异味;②颗粒物;③病原微生物;④有害气体. 适用场所: A. 小型场所;B. 大型公共人员聚集场所;C. 公共交通工具;D. 医院.
Application technology: 1. Filtration; 2. Ultraviolet disinfection; 3. Electrostatic adsorption; 4. Ozone disinfection; 5. Disinfectant atomization; 6. High-voltage discharge technology; 7. Photocatalytic technology; 8. Nano-silver technology; 9. Lysozyme technology. Target pollutants: ① odor; ② particulate matter; ③ pathogenic microorganisms; ④ harmful gases. Applicable places: A. Small place; B. Large gathering places for public personnel; C. Public transportation; D. Hospital. -
[1] BAI H T, HE W, CHAU J H C, et al. AIEgens for microbial detection and antimicrobial therapy[J]. Biomaterials, 2021, 268: 120598. doi: 10.1016/j.biomaterials.2020.120598 [2] PAPAGRIGORAKIS M J, YAPIJAKIS C, SYNODINOS P N, et al. DNA examination of ancient dental pulp incriminates typhoid fever as a probable cause of the Plague of Athens[J]. International Journal of Infectious Diseases, 2006, 10(3): 206-214. doi: 10.1016/j.ijid.2005.09.001 [3] CUNHA B A. The cause of the plague of Athens: Plague, typhoid, typhus, smallpox, or measles?[J]. Infectious Disease Clinics of North America, 2004, 18(1): 29-43. doi: 10.1016/S0891-5520(03)00100-4 [4] BERCHE P. Life and death of smallpox[J]. La Presse Médicale, 2022, 51(3): 104117. [5] WAGNER D M, KLUNK J, HARBECK M, et al. Yersinia pestis and the plague of Justinian 541-543 AD: A genomic analysis[J]. The Lancet Infectious Diseases, 2014, 14(4): 319-326. doi: 10.1016/S1473-3099(13)70323-2 [6] DeWITTE S N. Age patterns of mortality during the Black Death in London, A. D. 1349-1350[J]. Journal of Archaeological Science, 2010, 37(12): 3394-3400. doi: 10.1016/j.jas.2010.08.006 [7] CHAKRABORTY C. Therapeutics development for Ebola virus disease: A recent scenario[J]. Current Opinion in Pharmacology, 2021, 60: 208-215. doi: 10.1016/j.coph.2021.07.020 [8] OHIMAIN E I, SILAS-OLU D. The 2013-2016 Ebola virus disease outbreak in West Africa[J]. Current Opinion in Pharmacology, 2021, 60: 360-365. doi: 10.1016/j.coph.2021.08.002 [9] MALVY D, McELROY A K, de CLERCK H, et al. Ebola virus disease[J]. Lancet, 2019, 393(10174): 936-948. doi: 10.1016/S0140-6736(18)33132-5 [10] PEIRIS J, LAI S, POON L, et al. Coronavirus as a possible cause of severe acute respiratory syndrome[J]. The Lancet, 2003, 361(9366): 1319-1325. doi: 10.1016/S0140-6736(03)13077-2 [11] PEIRIS J, CHU C, CHENG V, et al. Clinical progression and viral load in a community outbreak of coronavirus-associated SARS pneumonia: A prospective study[J]. The Lancet, 2003, 361(9371): 1767-1772. doi: 10.1016/S0140-6736(03)13412-5 [12] DINOI A, FELTRACCO M, CHIRIZZI D, et al. A review on measurements of SARS-CoV-2 genetic material in air in outdoor and indoor environments: Implication for airborne transmission[J]. Science of the Total Environment, 2022, 809: 151137. doi: 10.1016/j.scitotenv.2021.151137 [13] LI J Y, YOU Z, WANG Q, et al. The epidemic of 2019-novel-coronavirus (2019-nCoV) pneumonia and insights for emerging infectious diseases in the future[J]. Microbes and Infection, 2020, 22(2): 80-85. doi: 10.1016/j.micinf.2020.02.002 [14] LA A, ZHANG Q, CICEK N, et al. Current understanding of the airborne transmission of important viral animal pathogens in spreading disease[J]. Biosystems Engineering, 2022, 224: 92-117. doi: 10.1016/j.biosystemseng.2022.09.013 [15] SONG L, ZHOU J F, WANG C, et al. Airborne pathogenic microorganisms and air cleaning technology development: A review[J]. Journal of Hazardous Materials, 2022, 424: 127429. doi: 10.1016/j.jhazmat.2021.127429 [16] 库婷婷, 刘倩, 桑楠, 等. 几种典型呼吸道病毒的病原学特征及其检测方法[J]. 环境化学, 2020, 39(4): 841-851. doi: 10.7524/j.issn.0254-6108.2020030601 KU T T, LIU Q, SANG N, et al. Pathogenic characteristics and detection methods of several typical respiratory viruses[J]. Environmental Chemistry, 2020, 39(4): 841-851 (in Chinese). doi: 10.7524/j.issn.0254-6108.2020030601
[17] 黄亚妮, 王玲, 曹梦西, 等. 新型冠状病毒(SARS-CoV-2)的环境传播研究进展[J]. 环境化学, 2021, 40(7): 1945-1957. doi: 10.7524/j.issn.0254-6108.2021022703 HUANG Y N, WANG L, CAO M X, et al. A review on the environmental transmission of novel coronavirus(SARS-CoV-2)[J]. Environmental Chemistry, 2021, 40(7): 1945-1957 (in Chinese). doi: 10.7524/j.issn.0254-6108.2021022703
[18] MOON J, RYU B H. Transmission risks of respiratory infectious diseases in various confined spaces: A meta-analysis for future pandemics[J]. Environmental Research, 2021, 202: 111679. doi: 10.1016/j.envres.2021.111679 [19] ASLAN A, KARADUMAN E, DERUN E M, et al. Development and characterization of negative air ion emitting mica- and sericite-based antimicrobial pearlescent pigments[J]. Ceramics International, 2021, 47(18): 26421-26429. doi: 10.1016/j.ceramint.2021.06.053 [20] BALAGNA C, PERERO S, BOSCO F, et al. Antipathogen nanostructured coating for air filters[J]. Applied Surface Science, 2020, 508: 145283. doi: 10.1016/j.apsusc.2020.145283 [21] HUO Z Y, KIM Y J, SUH I Y, et al. Triboelectrification induced self-powered microbial disinfection using nanowire-enhanced localized electric field[J]. Nature Communications, 2021, 12: 3693. doi: 10.1038/s41467-021-24028-5 [22] 陈美恋, 高燕. 空气消毒在预防呼吸道传染病中的意义及方法探讨[J]. 中国感染控制杂志, 2021, 20(6): 577-582. CHEN M L, GAO Y. Significance and method of air disinfection in preventing respiratory infectious diseases[J]. Chinese Journal of Infection Control, 2021, 20(6): 577-582 (in Chinese).
[23] FOROUGHI M, KHIADANI M, KAKHKI S, et al. Effect of ozonation-based disinfection methods on the removal of antibiotic resistant bacteria and resistance genes (ARB/ARGs) in water and wastewater treatment: A systematic review[J]. Science of the Total Environment, 2022, 811: 151404. doi: 10.1016/j.scitotenv.2021.151404 [24] van der VOSSEN J M B M, FAWZY A, OUWENS A M T, et al. Effective ultraviolet C light disinfection of respirators demonstrated in challenges with Geobacillus stearothermophilus spores and SARS-CoV-2 virus[J]. Journal of Hospital Infection, 2022, 122: 168-172. doi: 10.1016/j.jhin.2022.01.021 [25] BERNHARDT T, SEMMLER M L, SCHÄFER M, et al. Plasma medicine: Applications of cold atmospheric pressure plasma in dermatology[J]. Oxidative Medicine and Cellular Longevity, 2019, 2019: 1-10. [26] VISCONTI V, COTON E, RIGALMA K, et al. Effects of disinfectants on inactivation of mold spores relevant to the food industry: A review[J]. Fungal Biology Reviews, 2021, 38: 44-66. doi: 10.1016/j.fbr.2021.09.004 [27] ZHANG J, ZHANG A J, LIU D, et al. Customer preferences extraction for air purifiers based on fine-grained sentiment analysis of online reviews[J]. Knowledge-Based Systems, 2021, 228: 107259. doi: 10.1016/j.knosys.2021.107259 [28] CHEEK E, GUERCIO V, SHRUBSOLE C, et al. Portable air purification: Review of impacts on indoor air quality and health[J]. Science of the Total Environment, 2021, 766: 142585. doi: 10.1016/j.scitotenv.2020.142585 [29] LIU L, FANG J M, LI M, et al. The effect of air pollution on consumer decision making: A review[J]. Cleaner Engineering and Technology, 2022, 9: 100514. doi: 10.1016/j.clet.2022.100514 [30] LANAO M, ORMAD M P, IBARZ C, et al. Bactericidal effectiveness of O3, O3/H2O2 and O3/TiO2 onClostridium perfringens[J]. Ozone:Science & Engineering, 2008, 30(6): 431-438. [31] BALAGNA C, FRANCESE R, PERERO S, et al. Nanostructured composite coating endowed with antiviral activity against human respiratory viruses deposited on fibre-based air filters[J]. Surface and Coatings Technology, 2021, 409: 126873. doi: 10.1016/j.surfcoat.2021.126873 [32] HE J H, KUMAR A, KHAN M, et al. Critical review of photocatalytic disinfection of bacteria: From noble metals- and carbon nanomaterials-TiO2 composites to challenges of water characteristics and strategic solutions[J]. Science of the Total Environment, 2021, 758: 143953. doi: 10.1016/j.scitotenv.2020.143953 [33] MANJUNATH S N, SAKAR M, KATAPADI M, et al. Recent case studies on the use of ozone to combat coronavirus: Problems and perspectives[J]. Environmental Technology & Innovation, 2021, 21: 101313. [34] NAMDARI M, LEE C S, HAGHIGHAT F. Active ozone removal technologies for a safe indoor environment: A comprehensive review[J]. Building and Environment, 2021, 187: 107370. doi: 10.1016/j.buildenv.2020.107370 [35] 叶必雄, 王五一, 杨林生, 等. 二氧化氯与氯联合消毒对饮用水中消毒副产物的影响[J]. 环境化学, 2011, 30(7): 1236-1240. YE B X, WANG W Y, YANG L S, et al. Effect of combined disinfection with chlorine and chlorine dioxide on the formation of disinfection by-products in drinking water[J]. Environmental Chemistry, 2011, 30(7): 1236-1240 (in Chinese).
[36] DANG X Q, HUANG J Y, CAO L, et al. Plasma-catalytic oxidation of adsorbed toluene with gas circulation[J]. Catalysis Communications, 2013, 40: 116-119. doi: 10.1016/j.catcom.2013.06.025 [37] 张益坤, 姚鑫, 陈铭夏, 等. 低温等离子体除苯过程中臭氧的演变与作用[J]. 工业催化, 2020, 28(4): 68-72. ZHANG Y K, YAO X, CHEN M X, et al. Transmutation and effect of ozone generation on benzene removal by low temperature plasma[J]. Industrial Catalysis, 2020, 28(4): 68-72 (in Chinese).
[38] 何梓豪, 裴清清, 秋元孝之. 针对PM2.5的家用空气净化器HEPA滤网材料选择[J]. 环境工程, 2018, 36(8): 138-142. HE Z H, PEI Q Q, TAKASHI A. Selection of HEPA filter material specific for household air purifier with removal of PM2.5[J]. Environmental Engineering, 2018, 36(8): 138-142 (in Chinese).
[39] 张虹利, 施冰, 张明晶, 等. 空气净化器过滤网性质探究实验设计[J]. 化学教育(中英文), 2019, 40(15): 6-10. ZHANG H L, SHI B, ZHANG M J, et al. Experimental design of inquiring air purifier filter’s properties[J]. Chinese Journal of Chemical Education, 2019, 40(15): 6-10 (in Chinese).
[40] HIJNEN W A M, BEERENDONK E F, MEDEMA G J. Inactivation credit of UV radiation for viruses, bacteria and protozoan (oo)cysts in water: A review[J]. Water Research, 2006, 40(1): 3-22. doi: 10.1016/j.watres.2005.10.030 [41] KONG J Y, LU Y, REN Y R, et al. The virus removal in UV irradiation, ozonation and chlorination[J]. Water Cycle, 2021, 2: 23-31. doi: 10.1016/j.watcyc.2021.05.001 [42] 陈玲, 周乐, 王书田, 等. 静电过滤器与其他空气消毒性能比较[J]. 中国新技术新产品, 2021(19): 83-86,131. CHEN L, ZHOU (L /Y), WANG S T, et al. Comparison of disinfection performance between electrostatic filter and other air filters[J]. New Technology & New Products of China, 2021(19): 83-86,131 (in Chinese).
[43] STANGE C, SIDHU J P S, TOZE S, et al. Comparative removal of antibiotic resistance genes during chlorination, ozonation, and UV treatment[J]. International Journal of Hygiene and Environmental Health, 2019, 222(3): 541-548. doi: 10.1016/j.ijheh.2019.02.002 [44] 黄俊东, 廖如燕, 蔡慧玲, 等. 常用化学消毒剂对新型冠状病毒灭活效果的研究进展[J]. 中国消毒学杂志, 2021, 38(11): 864-867. HUANG J D, LIAO R Y, CAI H L, et al. Research progress on inactivation effect of common chemical disinfectants on novel coronavirus[J]. Chinese Journal of Disinfection, 2021, 38(11): 864-867 (in Chinese).
[45] 林立旺, 陈路瑶, 章灿明, 等. 新型冠状病毒防控中消毒剂的正确选择[J]. 中国消毒学杂志, 2020, 37(3): 226-229. LIN L W, CHEN L Y, ZHANG C M, et al. Correct selection of disinfectants in prevention and control of novel coronavirus[J]. Chinese Journal of Disinfection, 2020, 37(3): 226-229 (in Chinese).
[46] 马良军, 王佳媚, 黄明明, 等. 不同处理条件对介质阻挡放电低温等离子体杀菌效果及影响机理研究[J]. 微生物学报, 2019, 59(8): 1512-1521. MA L J, WANG J M, HUANG M M, et al. Sterilization by dielectric barrier discharge low temperature plasma under different treatment conditions[J]. Acta Microbiologica Sinica, 2019, 59(8): 1512-1521 (in Chinese).
[47] JIANG S Y, MA A L, RAMACHANDRAN S. Negative air ions and their effects on human health and air quality improvement[J]. International Journal of Molecular Sciences, 2018, 19(10): 2966. doi: 10.3390/ijms19102966 [48] SARAVANAN A, KUMAR P S, JEEVANANTHAM S, et al. Photocatalytic disinfection of micro-organisms: Mechanisms and applications[J]. Environmental Technology & Innovation, 2021, 24: 101909. [49] GANGULY P, BYRNE C, BREEN A, et al. Antimicrobial activity of photocatalysts: Fundamentals, mechanisms, kinetics and recent advances[J]. Applied Catalysis B:Environmental, 2018, 225: 51-75. doi: 10.1016/j.apcatb.2017.11.018 [50] GUAN D L, NIU C G, WEN X J, et al. Enhanced Escherichia coli inactivation and oxytetracycline hydrochloride degradation by a Z-scheme silver iodide decorated bismuth vanadate nanocomposite under visible light irradiation[J]. Journal of Colloid and Interface Science, 2018, 512: 272-281. doi: 10.1016/j.jcis.2017.10.068 [51] 薛文强, 于世平. 纳米银的抗菌机制及临床应用研究[J]. 中国微生态学杂志, 2022, 34(1): 117-120. XUE W Q, YU S P. Antibacterial mechanism and clinical application of silver nanoparticles[J]. Chinese Journal of Microecology, 2022, 34(1): 117-120 (in Chinese).
[52] ZHANG D R, HUANG L J, SUN D W, et al. Bio-interface engineering of MXene nanosheets with immobilized lysozyme for light-enhanced enzymatic inactivation of methicillin-resistant Staphylococcus aureus[J]. Chemical Engineering Journal, 2023, 452: 139078. doi: 10.1016/j.cej.2022.139078 [53] 孔之奇, 郭大亮, 吴安波, 等. 空气过滤材料用功能纤维研究进展[J]. 纤维素科学与技术, 2021, 29(3): 36-46. KONG Z Q, GUO D L, WU A B, et al. Research progress of functional fiber for air filtration composite material[J]. Journal of Cellulose Science and Technology, 2021, 29(3): 36-46 (in Chinese).
[54] JI X Z, HUANG J Y, TENG L, et al. Advances in particulate matter filtration: Materials, performance, and application[J]. Green Energy & Environment, 2023, 8(3): 673-697. [55] ZACHARIAS N, HAAG A, BRANG-LAMPRECHT R, et al. Air filtration as a tool for the reduction of viral aerosols[J]. Science of the Total Environment, 2021, 772: 144956. doi: 10.1016/j.scitotenv.2021.144956 [56] XIA T L, CHEN C. Evolution of pressure drop across electrospun nanofiber filters clogged by solid particles and its influence on indoor particulate air pollution control[J]. Journal of Hazardous Materials, 2021, 402: 123479. doi: 10.1016/j.jhazmat.2020.123479 [57] MÖRITZ M, PETERS H, NIPKO B, et al. Capability of air filters to retain airborne bacteria and molds in heating, ventilating and air-conditioning (HVAC) systems[J]. International Journal of Hygiene and Environmental Health, 2001, 203(5/6): 401-409. [58] PARK D H, JOE Y H, PIRI A M, et al. Determination of air filter anti-viral efficiency against an airborne infectious virus[J]. Journal of Hazardous Materials, 2020, 396: 122640. doi: 10.1016/j.jhazmat.2020.122640 [59] NAKAJIMA S, KUMITA M, MATSUHASHI H, et al. Centrifugal filter for aerosol collection[J]. Aerosol Science and Technology, 2015, 49(10): 959-965. doi: 10.1080/02786826.2015.1086481 [60] RAEISZADEH M, ADELI B. A critical review on ultraviolet disinfection systems against COVID-19 outbreak: Applicability, validation, and safety considerations[J]. ACS Photonics, 2020, 7(11): 2941-2951. doi: 10.1021/acsphotonics.0c01245 [61] SKUDRA A, REVALDE G, ZAJAKINA A, et al. UV inactivation of Semliki Forest virus andE. colibacteria by alternative light sources[J]. Journal of Photochemistry and Photobiology, 2022, 10: 100120. doi: 10.1016/j.jpap.2022.100120 [62] LINDEN K G, THURSTON J, SCHAEFER R, et al. Enhanced UV inactivation of adenoviruses under polychromatic UV lamps[J]. Applied and Environmental Microbiology, 2007, 73(23): 7571-7574. doi: 10.1128/AEM.01587-07 [63] 杨成双, 王新昌, 范冰丰, 等. 紫外发光二极管的应用及研究进展[J]. 佛山科学技术学院学报(自然科学版), 2021, 39(5): 57-65. YANG C S, WANG X C, FAN B F, et al. Application and research progress of ultraviolet light-emitting diodes[J]. Journal of Foshan University (Natural Science Edition), 2021, 39(5): 57-65 (in Chinese).
[64] SHIMODA H, MATSUDA J, IWASAKI T, et al. Efficacy of 265-nm ultraviolet light in inactivating infectious SARS-CoV-2[ J]. Journal of Photochemistry and Photobiology, 2022, 9: 100100. [65] XIONG W L, LIN Z P, ZHANG W Y, et al. Experimental and simulation studies on dust loading performance of a novel electrostatic precipitator with dielectric barrier electrodes[J]. Building and Environment, 2018, 144: 119-128. doi: 10.1016/j.buildenv.2018.08.008 [66] MO J H, TIAN E Z, PAN J. New electrostatic precipitator with dielectric coatings to efficiently and safely remove sub-micro particles in the building environment[J]. Sustainable Cities and Society, 2020, 55: 102063. doi: 10.1016/j.scs.2020.102063 [67] FENG Z B, CAO S J, WANG J Q, et al. Indoor airborne disinfection with electrostatic disinfector (ESD): Numerical simulations of ESD performance and reduction of computing time[J]. Building and Environment, 2021, 200: 107956. doi: 10.1016/j.buildenv.2021.107956 [68] 侯雯琪, 曲云霞, 姜远征, 等. 静电型空气净化器臭氧释放研究[J]. 节能, 2022, 41(2): 56-59. HOU W Q, QU Y X, JIANG Y Z, et al. Research on ozone release from electrostatic air purifier[J]. Energy Conservation, 2022, 41(2): 56-59 (in Chinese).
[69] WANG P, LIU J J, WANG C H, et al. A holistic performance assessment of duct-type electrostatic precipitators[J]. Journal of Cleaner Production, 2022, 357: 131997. doi: 10.1016/j.jclepro.2022.131997 [70] WOLFGRUBER S, LOIBNER M, PUFF M, et al. SARS-CoV2 neutralizing activity of ozone on porous and non-porous materials[J]. New Biotechnology, 2022, 66: 36-45. doi: 10.1016/j.nbt.2021.10.001 [71] EPELLE E I, MACFARLANE A, CUSACK M, et al. Bacterial and fungal disinfection via ozonation in air[J]. Journal of Microbiological Methods, 2022, 194: 106431. doi: 10.1016/j.mimet.2022.106431 [72] BAYARRI B, CRUZ-ALCALDE A, LÓPEZ-VINENT N, et al. Can ozone inactivate SARS-CoV-2?A review of mechanisms and performance on viruses[J]. Journal of Hazardous Materials, 2021, 415: 125658. doi: 10.1016/j.jhazmat.2021.125658 [73] YANO H, NAKANO R, SUZUKI Y, et al. Inactivation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by gaseous ozone treatment[J]. The Journal of Hospital Infection, 2020, 106(4): 837-838. doi: 10.1016/j.jhin.2020.10.004 [74] RUBIO-ROMERO J C, del CARMEN PARDO-FERREIRA M, TORRECILLA-GARCÍA J A, et al. Disposable masks: Disinfection and sterilization for reuse, and non-certified manufacturing, in the face of shortages during the COVID-19 pandemic[J]. Safety Science, 2020, 129: 104830. doi: 10.1016/j.ssci.2020.104830 [75] LI X T, MA J Z, HE H. Recent advances in catalytic decomposition of ozone[J]. Journal of Environmental Sciences, 2020, 94: 14-31. doi: 10.1016/j.jes.2020.03.058 [76] FILIPE H A L, FIUZA S M, HENRIQUES C A, et al. Antiviral and antibacterial activity of hand sanitizer and surface disinfectant formulations[J]. International Journal of Pharmaceutics, 2021, 609: 121139. doi: 10.1016/j.ijpharm.2021.121139 [77] 施琦, 慈颖, 王静, 等. 14种常用消毒剂的病毒灭活效果[J]. 中国国境卫生检疫杂志, 2022, 45(6): 470-473. SHI Q, CI Y, WANG J, et al. Study on the inactivation effect of 14 common disinfectants on virus[J]. Chinese Journal of Frontier Health and Quarantine, 2022, 45(6): 470-473 (in Chinese).
[78] GOYAL S M, CHANDER Y, YEZLI S, et al. Evaluating the virucidal efficacy of hydrogen peroxide vapour[J]. Journal of Hospital Infection, 2014, 86(4): 255-259. doi: 10.1016/j.jhin.2014.02.003 [79] MEYERS C, KASS R, GOLDENBERG D, et al. Ethanol and isopropanol inactivation of human coronavirus on hard surfaces[J]. Journal of Hospital Infection, 2021, 107: 45-49. doi: 10.1016/j.jhin.2020.09.026 [80] 叶利兰, 甘春娟, 陈垚, 等. 疫情防控期间含氯消毒剂大量使用对水生生物的影响综述[J]. 环境污染与防治, 2021, 43(5): 644-648. YE L L, GAN C J, CHEN Y, et al. Effect of chlorinated disinfectants usage on aquatic organism during the epidemic control: A review[J]. Environmental Pollution & Control, 2021, 43(5): 644-648 (in Chinese).
[81] 莫谦, 张磊. 中药空气消毒法应用现状[J]. 中医学报, 2021, 36(7): 1462-1467. MO Q, ZHANG L. Application status of air disinfection method with Chinese herbal medicine[J]. Acta Chinese Medicine, 2021, 36(7): 1462-1467 (in Chinese).
[82] 章洁, 方毕飞, 朱珍华. 中药煮沸熏蒸用于呼吸科病室空气消毒的效果[J]. 中医药管理杂志, 2019, 27(18): 225-226. ZHANG J, FANG B F, ZHU Z H. Effect of boiling fumigation of traditional Chinese medicine on air disinfection in respiratory ward[J]. Journal of Traditional Chinese Medicine Management, 2019, 27(18): 225-226 (in Chinese).
[83] ONDARTS M, HAJJI W, OUTIN J, et al. Non-Thermal Plasma for indoor air treatment: Toluene degradation in a Corona discharge at ppbv levels[J]. Chemical Engineering Research and Design, 2017, 118: 194-205. doi: 10.1016/j.cherd.2016.12.015 [84] 窦勇, 姚妙爱, 闾怀中, 等. 冷等离子体对单核增生李斯特菌的杀菌机理[J]. 中国农业科学, 2020, 53(24): 5104-5114. DOU Y, YAO M A, LV H Z, et al. Antibacterial mechanism of cold plasma against Listeria monocytogenes[J]. Scientia Agricultura Sinica, 2020, 53(24): 5104-5114 (in Chinese).
[85] CAI Y, WU X S, LUO Y, et al. Plasma-assisted rotating disk reactor toward disinfection of aquatic microorganisms[J]. Industrial & Engineering Chemistry Research, 2019, 58(31): 13977-13986. [86] QIN H B, QIU H J, HE S T, et al. Efficient disinfection of SARS-CoV-2-like coronavirus, pseudotyped SARS-CoV-2 and other coronaviruses using cold plasma induces spike protein damage[J]. Journal of Hazardous Materials, 2022, 430: 128414. doi: 10.1016/j.jhazmat.2022.128414 [87] HASHIYADA M, NAKANISHI H, ASOGAWA M, et al. Removal effect of DNA contamination by hydrogen peroxide plasma compared to ethylene-oxide gas[J]. Legal Medicine, 2022, 54: 102009. doi: 10.1016/j.legalmed.2021.102009 [88] KIM Y E, MIN S C. Inactivation of Salmonella in ready-to-eat cabbage slices packaged in a plastic container using an integrated in-package treatment of hydrogen peroxide and cold plasma[J]. Food Control, 2021, 130: 108392. doi: 10.1016/j.foodcont.2021.108392 [89] IBÁÑEZ-CERVANTES G, BRAVATA-ALCÁNTARA J C, NÁJERA-CORTÉS A S, et al. Disinfection of N95 masks artificially contaminated with SARS-CoV-2 and ESKAPE bacteria using hydrogen peroxide plasma: Impact on the reutilization of disposable devices[J]. American Journal of Infection Control, 2020, 48(9): 1037-1041. doi: 10.1016/j.ajic.2020.06.216 [90] GUO L, YAO Z Q, YANG L, et al. Plasma-activated water: An alternative disinfectant for S protein inactivation to prevent SARS-CoV-2 infection[J]. Chemical Engineering Journal, 2021, 421: 127742. doi: 10.1016/j.cej.2020.127742 [91] 刘骁, 孟茜, 张明莉, 等. 等离子体活化水对腐败希瓦氏菌杀菌效果及机理 [J]. 食品科学,2023,44(9):25-31. LIU X, MENG Q, ZHANG M L, et al. The inactivation effect and mechanism of PAW on Shewan Ella putrefacient [J]. Food Science,2023,44(9):25-31(in Chinese).
[92] LI A B, LI Q L, ZHOU B Z, et al. Temporal dynamics of negative air ion concentration and its relationship with environmental factors: Results from long-term on-site monitoring[J]. Science of the Total Environment, 2022, 832: 155057. doi: 10.1016/j.scitotenv.2022.155057 [93] 郭禹岐, 白莉. 负离子空气净化技术研究[J]. 北方建筑, 2019, 4(6): 35-38. GUO Y Q, BAI L. Study on negative ion air purification technology[J]. Northern Architecture, 2019, 4(6): 35-38 (in Chinese).
[94] NUNAYON S S, ZHANG H H, JIN X, et al. Experimental evaluation of positive and negative air ions disinfection efficacy under different ventilation duct conditions[J]. Building and Environment, 2019, 158: 295-301. doi: 10.1016/j.buildenv.2019.05.027 [95] BADHE R V, NIPATE S S. The use of negative oxygen ion clusters[O2−(H2O)n]and bicarbonate ions[HCO3−]as the supportive treatment of COVID-19 infections: A possibility[J]. Medical Hypotheses, 2021, 154: 110658. doi: 10.1016/j.mehy.2021.110658 [96] WU C C, LEE G W M, CHENG P, et al. Effect of wall surface materials on deposition of particles with the aid of negative air ions[J]. Journal of Aerosol Science, 2006, 37(5): 616-630. doi: 10.1016/j.jaerosci.2005.05.018 [97] SHIMIZU Y, ATEIA M, WANG M N, et al. Disinfection mechanism of E. coli by CNT-TiO2 composites: Photocatalytic inactivation vs. physical separation[J]. Chemosphere, 2019, 235: 1041-1049. doi: 10.1016/j.chemosphere.2019.07.006 [98] PRAKASH J, CHO J, MISHRA Y K. Photocatalytic TiO2 nanomaterials as potential antimicrobial and antiviral agents: Scope against blocking the SARS-COV-2 spread[J]. Micro and Nano Engineering, 2022, 14: 100100. doi: 10.1016/j.mne.2021.100100 [99] YANG C, WU H, SHI J F, et al. Preparation of dopamine/titania hybrid nanoparticles through biomimetic mineralization and titanium(IV)–catecholate coordination for enzyme immobilization[J]. Industrial & Engineering Chemistry Research, 2014, 53(32): 12665-12672. [100] XU X Y, WU C B, GUO A Y, et al. Visible-light photocatalysis of organic contaminants and disinfection using biomimetic-synthesized TiO2-Ag-AgCl composite[J]. Applied Surface Science, 2022, 588: 152886. doi: 10.1016/j.apsusc.2022.152886 [101] DANILENKO I, GORBAN O, COSTA ZARAGOZA de OLIVEIRA PEDRO P M, et al. Photocatalytic composite nanomaterial and engineering solution for inactivation of airborne bacteria[J]. Topics in Catalysis, 2021, 64(13/14/15/16): 772-779. [102] SHI Y J, MA J X, CHEN Y N, et al. Recent progress of silver-containing photocatalysts for water disinfection under visible light irradiation: A review[J]. Science of the Total Environment, 2022, 804: 150024. doi: 10.1016/j.scitotenv.2021.150024 [103] SHUAI C J, XU Y, FENG P, et al. Antibacterial polymer scaffold based on mesoporous bioactive glass loaded with in situ grown silver[J]. Chemical Engineering Journal, 2019, 374: 304-315. doi: 10.1016/j.cej.2019.03.273 [104] de FARIA A F, MARTINEZ D S T, MEIRA S M M, et al. Anti-adhesion and antibacterial activity of silver nanoparticles supported on graphene oxide sheets[J]. Colloids and Surfaces B:Biointerfaces, 2014, 113: 115-124. doi: 10.1016/j.colsurfb.2013.08.006 [105] PRAKASH J, SUN S H, SWART H C, et al. Noble metals-TiO2 nanocomposites: From fundamental mechanisms to photocatalysis, surface enhanced Raman scattering and antibacterial applications[J]. Applied Materials Today, 2018, 11: 82-135. doi: 10.1016/j.apmt.2018.02.002 [106] YANG G X, YIN H B, LIU W H, et al. Synergistic Ag/TiO2-N photocatalytic system and its enhanced antibacterial activity towards Acinetobacter baumannii[J]. Applied Catalysis B:Environmental, 2018, 224: 175-182. doi: 10.1016/j.apcatb.2017.10.052 [107] HAMDANI A M, WANI I A, AHMAD BHAT N, et al. Effect of guar gum conjugation on functional, antioxidant and antimicrobial activity of egg white lysozyme[J]. Food Chemistry, 2018, 240: 1201-1209. doi: 10.1016/j.foodchem.2017.08.060 [108] 朱元镇, 刘婧仪, 于常红. 溶菌酶的研究进展及应用[J]. 山东医学高等专科学校学报, 2018, 40(3): 207-210. doi: 10.3969/j.issn.1674-0947.2018.03.018 ZHU Y Z, LIU J Y, YU C H. Research progress and application of lysozyme[J]. Journal of Shandong Medical College, 2018, 40(3): 207-210 (in Chinese). doi: 10.3969/j.issn.1674-0947.2018.03.018
[109] EBY D M, LUCKARIFT H R, JOHNSON G R. Hybrid antimicrobial enzyme and silver nanoparticle coatings for medical instruments[J]. ACS Applied Materials & Interfaces, 2009, 1(7): 1553-1560. [110] EBY D M, SCHAEUBLIN N M, FARRINGTON K E, et al. Lysozyme catalyzes the formation of antimicrobial silver nanoparticles[J]. ACS Nano, 2009, 3(4): 984-994. doi: 10.1021/nn900079e [111] JIANG J, ZHANG C, ZENG G M, et al. The disinfection performance and mechanisms of Ag/lysozyme nanoparticles supported with montmorillonite clay[J]. Journal of Hazardous Materials, 2016, 317: 416-429. doi: 10.1016/j.jhazmat.2016.05.089 [112] FULLER R, LANDRIGAN P J, BALAKRISHNAN K, et al. Pollution and health: A progress update[J]. The Lancet Planetary Health, 2022, 6(6): e535-e547. doi: 10.1016/S2542-5196(22)00090-0 [113] BAKLANOV A, MOLINA L T, GAUSS M. Megacities, air quality and climate[J]. Atmospheric Environment, 2016, 126: 235-249. doi: 10.1016/j.atmosenv.2015.11.059 [114] GURJAR B R, JAIN A, SHARMA A, et al. Human health risks in megacities due to air pollution[J]. Atmospheric Environment, 2010, 44(36): 4606-4613. doi: 10.1016/j.atmosenv.2010.08.011 [115] 司福德, 张磊. 我国新发传染病的流行现状及预防控制策略[J]. 职业与健康, 2013, 29(9): 1134-1136. SI F D, ZHANG L. The epidemic situation and preventive measures of emerging infectious diseases in China[J]. Occupation and Health, 2013, 29(9): 1134-1136 (in Chinese).
[116] CHALA B, HAMDE F. Emerging and re-emerging vector-borne infectious diseases and the challenges for control: A review[J]. Frontiers in Public Health, 2021, 9: 715759. doi: 10.3389/fpubh.2021.715759 [117] LAM S K K, KWONG E W Y, HUNG M S Y, et al. Emergency nurses’ perceptions regarding the risks appraisal of the threat of the emerging infectious disease situation in emergency departments[J]. International Journal of Qualitative Studies on Health and Well-Being, 2020, 15(1): 1718468. doi: 10.1080/17482631.2020.1718468 [118] 2022-23 Mpox Outbreak: Global Trends. Geneva: World Health Organization, 2023 [OL]. [119] WHO COVID-19 Dashboard. Geneva: World Health Organization, 2020 [OL]. [120] 申逸骋, 胡迪, 张伟, 等. 空气净化器未来发展概述[J]. 洁净与空调技术, 2019(3): 70-77. SHEN Y C, HU D, ZHANG W, et al. Summary of the future development of air purifier[J]. Contamination Control & Air-Conditioning Technology, 2019(3): 70-77 (in Chinese).
[121] 陶建平, 杨瑞, 柳褚泉, 等. 我国空气净化器市场现状与发展概述[J]. 广东化工, 2020, 47(11): 92-94. TAO J P, YANG R, LIU Z Q, et al. Current situation and development of air purifier market in China[J]. Guangdong Chemical Industry, 2020, 47(11): 92-94 (in Chinese).
[122] 刘洪涛. 压力重重下艰难前进: 2021年1~8月中国空气净化器市场分析[J]. 电器, 2021(10): 22-23. LIU H T. Hard progress under heavy pressure—Analysis of China air purifier market from January to August, 2021[J]. China Appliance, 2021(10): 22-23 (in Chinese).