-
电子转移过程在水、土壤和沉积物圈层中普遍发生,它是生物地球化学循环的基础. 在氧化还原反应体系,电子穿梭过程参与和控制诸多环境行为,如温室气体的排放、土壤矿物的还原、污染物的转化等[1 − 2]. 自然界中,微生物的胞外呼吸过程引起的电子传递是促进生物地球化学循环的关键驱动力[3]. 据报道,氢氧化细菌(Hydrogen-oxidizing bacteria)是一类化能自养型细菌,该细菌氧化无机电子供体H2获得能量,将捕获大气中CO2作为生长所需碳源,达到固碳减排效果[4]. Rotaru 等[5]发现,产甲烷菌(Methanosaeta harundinacea)能够直接接受来自金属还原地杆菌(Geobacter metalreducens)释放的电子,并利用得到的电子还原CO2生成甲烷. 氧化亚铁硫杆菌(Thiobacillus ferrooxidans)和硫氧化细菌(Azospirillum thiophilum)属于化能自养微生物,也可利用氧化还原过程产生的能量参与到氮素循环[6]. Myers 和 Nealson[7]研究发现,微生物菌Alteromnas putrefaciens MR-1 能够将电子传递至锰氧化物从而实现生长代谢. Lovely 和 Phillips [8]曾报道由淡水沉积物分离获得一种金属异化还原菌,命名为Geobacter metallireducens GS-15,它在厌氧环境下能够还原铁(Ⅲ)和锰(IV)的金属氧化物,并实现有机物的污染降解.
胞外电子传递涉及微生物利用电子供体进行自身代谢,或微生物通过胞内代谢将产生的电子导至胞外的受体的过程[9]. 微生物进行胞外呼吸作用产生的电子会依次经过细胞质膜-周质-细胞外膜,之后将电子供给胞外受体利用,外膜结构上存在的一系列功能蛋白细胞色素c(c-Cyts)是实现电子从胞内传输到胞外受体的关键部分. 例如,Shewanella oneidensis MR-1质子泵内产生的电子在脱氢酶的作用下传递给醌类介体后,经由胞内电子传递链传导至外膜,外膜上的MtrC和OmcA是与胞外受体作用的重要蛋白[10]. 而Geobacter sulfurreducens利用的外膜蛋白主要包括OmcB、OmcE、OmcS[11 − 12]. 直接和间接电子传递是微生物胞外电子传递过程的两种形式. 直接电子传递过程中,微生物菌和胞外电子受体可以直接接触,通过外膜上的功能蛋白c-Cyts与末端受体结合. 例如Shewanella菌属,合成的功能蛋白复合物MtrCAB直接负责电子传递至膜外的受体 [13]. 此外,当微生物的电子传递结构与胞外电子受体的距离在纳米范围内即无法直接接触时,“纳米导线”机制则成为可利用的电子传导的直接方式. 此方式类似于金属导电过程或者依托c-Cyts之间的电子跃迁,实现与远端受体的电子传递. Reguera 等首次发现Geobacter sulfurreducens的菌毛具有导电能力,将此结构命名为“纳米导线”[14]. 随后,Gorby 等在Shewanella oneidensis、蓝细菌等微生物中也发现类似现象[15]. 间接电子传递是利用由微生物自身分泌的或者外源环境提供的电子穿梭体来实现长距离的电子传递过程. 电子穿梭体通常是一类具有氧化还原活性的、可在环境体系中扩散迁移的化学物质. 某些微生物可以分泌核黄素、吩嗪类色素等小分子物质可以进入细胞内部,与内膜上的c-Cyts反应,将电子带出细胞外[13]. 像腐殖质这类外源性电子穿梭体能与外膜上的c-Cyts结合反应,在微生物和胞外受体间不断的扩散往返,达到电子传递的目的[16].
目前,研究较多的两类胞外呼吸微生物是Geobacter属和Shewanella菌属,两种菌属在胞外电子传递方式上存在差异. 例如,Geobacter菌属的“纳米导线”结构与金属导电体相似,具有较强的导电性能. 但Geobacter菌属无法自身分泌穿梭介体,在无外源穿梭介质的情况下,主要依靠微生物具有的“纳米导线”来传导电子. 而Shewanella菌属的“纳米导线”结构并非纤毛类物质,导电性能远不如Geobacter菌属,但由于表面具有丰富的c-Cyts也使得电子沿着导线传递过程顺利进行. 而且,Shewanella属具备分泌醌类介质的能力,常通过电子穿梭机制来完成胞外电子传递过程[15]. 电子穿梭机制能帮助突破微生物和电子受体间电子传递距离的限制,在氧化还原反应中起到电子载体的作用,实现电子迁移和转运,同时还克服了微生物自身合成附属物“纳米导线”所需能量的投入[9]. 电子穿梭体在微生物的胞外呼吸过程中发挥着重要作用,调控电子转移过程能够影响环境污染物(如重金属和有机物)的迁移和转化行为[17]. 例如,电子穿梭体通过介导微生物和非金属元素砷之间的电子传递,加速了厌氧环境下砷(V)转化砷(Ⅲ)的还原过程,增加了砷在环境介质中的迁移能力[18]. 电子穿梭体也可直接作用于五氯苯酚(Pentachlorophenol,PCP)的降解过程,促进其脱卤反应,完成对有机物的污染降解[17,19].
环境炭质按来源的不同可以将其分为天然有机质和人工有机炭,其中天然有机质(腐殖酸、富里酸、胡敏素)是土壤中的关键组分,在调控土壤的结构发育过程、保障土壤功能、土壤水分蓄持和减碳减排等方面起到了重要作用[19]. 而人工有机炭(生物炭、石墨、碳纳米管)具有的多孔结构、较大比表面积以及丰富的功能基团,导致其具有较高的反应活性. 这些炭质材料在结构和性质等方面呈现出多样性,发挥着不同的环境效应. 例如,利用稻杆制备的生物炭对过硫酸盐进行活化后可以有效降解苯胺[20],碳纳米管在降解染料、废水处理方面也有重要应用[21 − 22]. 研究发现,分散在土壤、沉积物、水体的腐殖酸、富里酸、生物炭、石墨等均可作为典型的电子穿梭体,参与到调控微生物胞外电子转运的过程中[23]. 本文对天然有机质和人工有机炭的代表性电子穿梭体进行类比,系统概述两类电子介质在自然环境中介导微生物胞外电子转移而引起的氧化还原反应、以及典型环境污染物(重金属、有机物)的行为和归驱,从而为研究介导电子转移参与的生物地球化学过程提供新思路.
环境炭质介导胞外电子传递转化污染物的机制
The mechanism of mediating extracellular electron transfer by environmental carbonaceous matter to contaminant transformation
-
摘要: 环境炭质可作为电子穿梭体,介导微生物胞外电子传递行为,调控着生物地球化学循环过程. 直接和间接电子传递是微生物胞外电子传递过程的两种形式. 在间接电子传递中,微生物利用电子穿梭体实现电子从胞内到胞外的迁移,除了微生物自身分泌的穿梭体之外,外源性电子穿梭体也被发现可以促进胞内外的电子转移过程,其中天然和人工的电子穿梭体(如腐殖质、生物炭等)在微生物胞外电子传递过程中均发挥着重要的介导作用,改变了胞外电子转移途径. 环境炭质的微尺度结构决定了其介导电子转移的功能. 于此,本文以两种外源性电子穿梭体的介导表现为研究主体,系统归纳了以腐殖质、生物炭为代表的环境炭质具有的氧化还原活性基团(如醌/酚类基团)和石墨化芳香炭结构(稠环芳香区域)、以及富碳介质的电子穿梭性能和机制;详述了环境炭质介导胞外电子转化典型的污染物(重金属和有机物)的效果;最后,总结了环境炭质(天然有机质和人工有机炭)在土壤、沉积物或水体系统参与介导胞外电子转移过程,并展望了当前研究所面临的挑战,这为新型电子穿梭介质的设计研发和工程应用提供技术支撑.Abstract: Environmental carbonaceous matter as an electron shuttle, can mediate electron transferthat regulates biogeochemical cycling processes. Microbial extracellular electron processes are of two types; direct and indirect electron transfers. In indirect electron transfer, microorganisms use electron shuttles to migrate electrons from intracellular to extracellular. In addition to microorganisms' own secreted shuttles, exogenous electron shuttles have also been found facilitating the intra- and extracellular electron transfer processes. Both natural and artificial electron shuttles (e.g., humic substance, biochar, etc.) play an important mediating role in extracellular electron transfer process by changing the pathway of electron transfer. The microscale structure of environmental carbonaceous matter determines its function in mediating electron transfer. Herein, the main subject of this review is to highlight the mediating behavior of two exogenous electron shuttles along with systematical summarization of the redox-active groups (e.g., quinone/phenol groups) and graphitized aromatic carbon (e.g., polycyclic aromatic regions), as well as the electron transfer properties and mechanisms of environmental carbonaceous matter. The effect of mediating extracellular electron transfer on the transformation of representative contaminants (e.g., heavy metals and organic pollutants) by environmental carbonaceous matter was described in detail. Conclusively, we included the mediated extracellular electron transfer by natural and engineered carbons in soil, sediment, or water systems and came up with the emerging future research challenges. The aim of this review is at providing a technical support for the design development and engineered application of novel electron shuttle materials.
-
表 1 天然有机质和人工有机炭介导胞外电子结构和污染物转化效果
Table 1. Natural and artificial carbon structure of mediating extracellular electron to pollutant transformation
电子穿梭介质
Electronic shuttle medium介导结构
Mediated structures微生物菌
Microorganisms环境污染物
Environmental pollutants介导降解效果
Mediated degradation effect文献
Literature胡敏素
(沉积物中提取)羧基、酚基官能团 未知菌(HQ688519)
Clostridium sp.
(AB275141)
Bacillus sp.(JX434141)
(甲酸盐20 mmol·L−1)2,2′,4,4′,5,5′-六氯联苯
(PCB153:
100 mg·L−1)胡敏素可以明显提高介导还原PCB153的脱氯,生成
2,2',5,5'-四氯联苯(PCB52)和
2,2',4,5,5'-五氯联(PCB101)[29] 胡敏素
(土壤和沉积物中
提取)醌类基团 Shewanella putrefaciens strain CN-32
(甲酸盐10 mmol·L−1)五氯苯酚
(PCP: 20 μmol·L−1)胡敏素促进微生物对五氯苯酚的还原脱氯,脱氯速率在0.99—7.63 [30] 胡敏素
(土壤和沉积物中
提取)醌类基团 Shewanella putrefaciens strain CN-32
(甲酸盐4 mmol·L−1)五氯苯酚
(PCP: 20 μmol·L−1)胡敏素能介导维持五氯苯酚的脱氯活性 [19] 富里酸
(填埋垃圾中提取)醌基、羧基、酚基官能团 Shewanella oneidensis MR-1
(乳酸钠5 mmol·L−1)五氯苯酚
(PCP: 6 mg·L−1)加入富里酸,Shewanella oneidensis MR-1 还原PCP降解率由 40% 显著提高到 80% 以上 [28] 土壤腐殖酸
(土壤中提取)含氧官能团(醌基) Geobacter sulfurreducens
(乙酸盐2 mmol·L−1)四氯化碳
(CT: 5 μmol )土壤腐殖酸提高了 CT 的一级转化率6.1倍 [31] 胡敏酸、富里酸
(土壤中提取)醌类基团 Shewanella putrefaciens CN32
(乳酸钠 10 mmol·L−1)铀 U(Ⅵ)
(初始浓度:
0.4 mmol·L−1)腐殖酸和富里酸的存在提高了U(Ⅵ)的还原率(高达10倍)
U(Ⅵ)转化为U(IV)[32] 腐殖质(腐殖酸、
富里酸)醌类基团 Geobacter metallireducens
(乙酸盐 10 mmol·L−1)铁氧化物 Fe(Ⅲ)
(初始浓度:
6 mmol·L−1)加入腐殖酸后,Fe(Ⅲ)还原量由0.25 mmol·L−1增加到
2.75 mmol·L−1以上[26] 腐殖质(腐殖酸、
富里酸)醌类基团 嗜碱菌Corynebacterium humireducens MFC-5
(蔗糖 5 mmol·L−1)针铁矿
(α-FeOOH:
5 mmol·L−1)
2,4-二氯苯氧乙酸
(2,4-D:
180 μmol ·L−1)A.富里酸加速针铁矿的生物还原 Fe(Ⅲ)转化为Fe(Ⅱ),Fe(Ⅱ)量由0.03 mmol·L−1 增加到
0.71 mmol·L−1,2,4-二氯苯氧乙酸降解率提高到38.7%;
B.腐殖酸加速针铁矿的生物还原 Fe(Ⅲ)转化为Fe(Ⅱ),Fe(Ⅱ)量由0.03 mmol·L−1 增加到
0.51 mmol·L−1; 2,4-二氯苯氧乙酸降解率提高到26.4%[33] 生物炭
(白杨木)醌类基团 反硝化微生物 硝酸盐
(初始浓度:
100 mg·L−1)BC400,BC500,和BC600生物炭介导硝酸盐还原,浓度分别降至
11.3 mg·L−1,26.3 mg·L−1和
56.3 mg·L−1[34] 生物炭
(木屑)醌类基团和芳香炭结构 Shewanella oneidensis MR-1
(乳酸钠 30 mmol·L−1)水铁矿
(初始浓度:
15 mmol·L−1)5g·L−1和10 g·L−1生物炭均加速了水铁矿还原,还原速率由(0.54±
015) mmol·h−1增加到(0.87±
0.19 )mmol·h−1 和(1.49±
0.23) mmol·h−1[35] 生物炭
(秸秆)醌基、酚基官能团
石墨结构Geobacter sulfurreducens
(乙酸盐 15 mmol·L−1)五氯苯酚
(PCP: 20 mg·L−1)生物炭显著加速了五氯苯酚的降解; 900°C生物炭表面氧化还原活性部分和电导率分别占PCP生物降解率的56%和41% [36] 生物炭
(秸秆、猪粪)醌类基团 金属还原菌
(Geobacter,Anaeromyxobacter,Desulfosporosinus,Pedobacter)
(乙酸盐 50 mmol·L−1)Fe(Ⅲ)
(初始浓度:
36.13 g·kg−1)
As(V)
(初始浓度:
244.25 mg·kg−1)
生物炭促进As(V)的生物还原转化As(Ⅲ),As(Ⅲ)浓度由(98.06±19.38) μg·L−1增加到(656.35±89.25) μg·L−1[37] 活性炭(AC) 含氧官能团 Shewanella oneidensis
MR-1
(乳酸钠30 mmol·L−1)水铁矿
(初始浓度:
30 mmol·L−1)活性炭加速了微生物还原铁氧矿物,其还原速率提高了1.7 — 8.2倍 [38] 还原氧化石墨烯(rGO)
(Shewanella@石墨烯核壳材料)石墨结构 Shewanella putrefaciens CN-32
(乳酸钠20 mmol·L−1)硝基苯
(NB: 0.8 mmol·L−1)提高了介导硝基苯的还原速率 [39] 碳纳米管(CNT) 半醌自由基 Shewanella putrefaciens CN32
(乳酸钠20 mmol·L−1)纳米针铁矿
(α-FeOOH: 2 g·L−1)
四溴双酚A
(TBBPA:
20 mg· L−1)CNT加入促使Fe(Ⅲ)转化为Fe(Ⅱ),增加了Fe(Ⅱ)生成,提高了四溴双酚A的去除(由20.5%提高至87.1%) [40] -
[1] SUN T R, LEVIN B D A, GUZMAN J J L, et al. Rapid electron transfer by the carbon matrix in natural pyrogenic carbon[J]. Nature Communications, 2017, 8(1): 14873. doi: 10.1038/ncomms14873 [2] 吴云当, 李芳柏, 刘同旭. 土壤微生物—腐殖质—矿物间的胞外电子传递机制研究进展[J]. 土壤学报, 2016, 53(2): 277-291. WU Y D, LI F B, LIU T X. Mechanism of extracellular electron transfer among microbe—humus—mineral in soil: A review[J]. Acta Pedologica Sinica, 2016, 53(2): 277-291(in Chinese).
[3] 田晓春. 微生物电化学技术研究希瓦氏菌的胞外电子传递机制[D]. 厦门: 厦门大学, 2017. TIAN X C. Research on mechanisms of extracellular electron transfer for Shewanella strains using microbial electrochemical technologies[D]. Xiamen: Xiamen University, 2017(in Chinese).
[4] 史涵, 王亚楠, 王清照, 等. 典型氢氧化细菌固碳特性种间差异及胞外有机物对固碳过程影响[J]. 环境科学学报, 2022, 42(11): 455-463. SHI H, WANG Y N, WANG Q Z, et al. Interspecific differences of carbon fixation characteristics of typical hydrogenoxidizing bacteria and effects of extracellular organic compounds on carbon fixation process[J]. Acta Scientiae Circumstantiae, 2022, 42(11): 455-463(in Chinese).
[5] ROTARU AE, SHRESTHA P M, LIU F H, et al. A new model for electron flow during anaerobic digestion: Direct interspecies electron transfer to Methanosaeta for the reduction of carbon dioxide to methane[J]. Energy & Environmental Science, 2014, 7(1): 408-415. [6] 王加龙, 刘驰, 雷丽, 等. 非共生固氮菌及其固氮作用[J]. 微生物学报, 2022, 62(8): 2861-2878. WANG J L, LIU C, LEI L, et al. Asymbiotic nitrogen-fixing bacteria and their nitrogen fixation potential[J]. Acta Microbiologica Sinica, 2022, 62(8): 2861-2878(in Chinese).
[7] MYERS C, NEALSON K. Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor[J]. Science, 1988, 240(4857): 1319-1321. doi: 10.1126/science.240.4857.1319 [8] LOVLEY D R, PHILLIPS E J. Novel mode of microbial energy metabolism: Organic carbon oxidation coupled to dissimilatory reduction of iron or manganese[J]. Applied and Environmental Microbiology, 1988, 54(6): 1472-1480. doi: 10.1128/aem.54.6.1472-1480.1988 [9] 林霄涵, 杨帆, 赵峰. 微生物的胞外电子传递界面[J]. 环境化学, 2021, 40(11): 3283-3296. doi: 10.7524/j.issn.0254-6108.2021033106 LIN X H, YANG F, ZHAO F. The interface of microbial extracellular electron transfer[J]. Environmental Chemistry, 2021, 40(11): 3283-3296(in Chinese). doi: 10.7524/j.issn.0254-6108.2021033106
[10] COURSOLLE D, GRALNICK J A. Modularity of the Mtr respiratory pathway of Shewanella oneidensis strain MR-1[J]. Molecular Microbiology, 2010, 77(4): 995-1008. doi: 10.1111/j.1365-2958.2010.07266.x [11] LEANG C, COPPI M V, LOVLEY D R. OmcB, a c-type polyheme cytochrome, involved in Fe(Ⅲ) reduction in Geobacter sulfurreducens[J]. Journal of Bacteriology, 2003, 185(7): 2096-2103. doi: 10.1128/JB.185.7.2096-2103.2003 [12] MEHTA T, COPPI M V, CHILDERS S E, et al. Outer membrane c-type cytochromes required for Fe(Ⅲ) and Mn(IV) oxide reduction in Geobacter sulfurreducens[J]. Applied and Environmental Microbiology, 2005, 71(12): 8634-8641. doi: 10.1128/AEM.71.12.8634-8641.2005 [13] WHITE G F, SHI Z, SHI L, et al. Rapid electron exchange between surface-exposed bacterial cytochromes and Fe(Ⅲ) minerals[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(16): 6346-6351. [14] REGUERA G, MCCARTHY K D, MEHTA T, et al. Extracellular electron transfer via microbial nanowires[J]. Nature, 2005, 435(7045): 1098-1101. doi: 10.1038/nature03661 [15] GORBY Y A, YANINA S, MCLEAN J S, et al. Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(30): 11358-11363. [16] GRALNICK J A, NEWMAN D K. Extracellular respiration[J]. Molecular Microbiology, 2007, 65(1): 1-11. doi: 10.1111/j.1365-2958.2007.05778.x [17] 张玉龙, 陈雪丽, 吴云当. 电子穿梭体及其介导的环境与地球化学过程研究进展[J]. 生态环境学报, 2021, 30(1): 213-222. ZHANG Y L, CHEN X L, WU Y D. Electron shuttle-mediated microbial extracellular electron transfer: Mechanisms and geochemical implications[J]. Ecology and Environmental Sciences, 2021, 30(1): 213-222(in Chinese).
[18] QIAO J T, LI X M, LI F B, et al. Humic substances facilitate arsenic reduction and release in flooded paddy soil[J]. Environmental Science & Technology, 2019, 53(9): 5034-5042. [19] ZHANG C F, KATAYAMA A. Humin as an electron mediator for microbial reductive dehalogenation[J]. Environmental Science & Technology, 2012, 46(12): 6575-6583. [20] WU Y, GUO J, HAN Y J, et al. Insights into the mechanism of persulfate activated by rice straw biochar for the degradation of aniline[J]. Chemosphere, 2018, 200: 373-379. doi: 10.1016/j.chemosphere.2018.02.110 [21] 焦新亭, 李晓东, 刘国文, 等. 碳纳米管对亚甲基蓝的吸附性能研究[J]. 安全与环境学报, 2007, 7(3): 44-47. doi: 10.3969/j.issn.1009-6094.2007.03.011 JIAO X T, LI X D, LIU G W, et al. Study on adsorption of methylene blue by carbon nanotubes[J]. Journal of Safety and Environment, 2007, 7(3): 44-47 (in Chinese). doi: 10.3969/j.issn.1009-6094.2007.03.011
[22] 王昕, 张春丽, 任广军, 等. 碳纳米管吸附染料甲基橙的性能研究[J]. 当代化工, 2008, 37(4): 375-377,381. WANG X, ZHANG C L, REN G J, et al. Study on the adsorption of methyl orange from aqueous solution by carbon nanotubes[J]. Contemporary Chemical Industry, 2008, 37(4): 375-377,381(in Chinese).
[23] 柳广飞, 朱佳琪, 于华莉, 等. 电子穿梭体介导微生物还原铁氧化物的研究进展[J]. 地球科学, 2018, 43(增刊1): 157-170. LIU G F, ZHU J Q, YU H L, et al. Review on electron-shuttle-mediated microbial reduction of iron oxides minerals[J]. Earth Science, 2018, 43(Sup 1): 157-170(in Chinese).
[24] 崔恒钊, 王育来, 邹丽敏, 等. 河岸带土壤溶解有机质垂直分布及其影响因素研究[J]. 环境科学与技术, 2015, 38(6): 8-13. CUI H Z, WANG Y L, ZOU L M, et al. Vertical distribution and impact factors of soil dissolved organic matter in riparian zones[J]. Environmental Science & Technology, 2015, 38(6): 8-13(in Chinese).
[25] PETTIT R E. Organic matter, humus, humate, humic acid, fulvic acid and humin: their importance in soil fertility and plant health[J]. CTI Research, 2004, 10: 1-7. [26] LOVLEY D R, COATES J D, BLUNT-HARRIS E L, et al. Humic substances as electron acceptors for microbial respiration[J]. Nature, 1996, 382(6590): 445-448. doi: 10.1038/382445a0 [27] 李东阳, 杨天学, 吴明红, 等. 腐殖酸强化六氯苯厌氧降解规律及其中间产物[J]. 环境科学研究, 2016, 29(6): 870-876. LI D Y, YANG T X, WU M H, et al. Anaerobic degradation regulation of hexachlorobenzene and degradation products enhanced by humic acid[J]. Research of Environmental Sciences, 2016, 29(6): 870-876(in Chinese).
[28] 刘思佳, 何小松, 张慧, 等. 生活垃圾不同填埋阶段的富里酸对五氯苯酚的降解[J]. 环境科学, 2018, 39(12): 5699-5707. LIU S J, HE X S, ZHANG H, et al. Degradation of pentachlorophenol by fulvic acid in a municipal solid waste landfill[J]. Environmental Science, 2018, 39(12): 5699-5707(in Chinese).
[29] ZHANG D D, ZHANG N, YU X W, et al. Effect of humins from different sediments on microbial degradation of 2, 2’, 4, 4’, 5, 5’-hexachlorobiphenyl (PCB153), and their polyphasic characterization[J]. RSC Advances, 2017, 7(12): 6849-6855. doi: 10.1039/C6RA25934K [30] ZHANG C F, ZHANG D D, XIAO Z X, et al. Characterization of humins from different natural sources and the effect on microbial reductive dechlorination of pentachlorophenol[J]. Chemosphere, 2015, 131: 110-116. doi: 10.1016/j.chemosphere.2015.02.043 [31] CERVANTES F J, VU-THI-THU L, LETTINGA G, et al. Quinone-respiration improves dechlorination of carbon tetrachloride by anaerobic sludge[J]. Applied Microbiology and Biotechnology, 2004, 64(5): 702-711. doi: 10.1007/s00253-004-1564-z [32] GU B H, YAN H, ZHOU P, et al. Natural humics impact uranium bioreduction and oxidation[J]. Environmental Science & Technology, 2005, 39(14): 5268-5275. [33] WU C Y, ZHUANG L, ZHOU S G, et al. Humic substance-mediated reduction of iron(Ⅲ) oxides and degradation of 2, 4-D by an alkaliphilic bacterium, Corynebacterium humireducens MFC-5[J]. Microbial Biotechnology, 2013, 6(2): 141-149. doi: 10.1111/1751-7915.12003 [34] SATHISHKUMAR K, LI Y, SANGANYADO E. Electrochemical behavior of biochar and its effects on microbial nitrate reduction: Role of extracellular polymeric substances in extracellular electron transfer[J]. Chemical Engineering Journal, 2020, 395: 125077. doi: 10.1016/j.cej.2020.125077 [35] KAPPLER A, WUESTNER M L, RUECKER A, et al. Biochar as an electron shuttle between bacteria and Fe(Ⅲ) minerals[J]. Environmental Science & Technology Letters, 2014, 1(8): 339-344. [36] YU L P, YUAN Y, TANG J, et al. Biochar as an electron shuttle for reductive dechlorination of pentachlorophenol by Geobacter sulfurreducens[J]. Scientific Reports, 2015, 5: 16221. doi: 10.1038/srep16221 [37] CHEN Z, WANG Y P, XIA D, et al. Enhanced bioreduction of iron and arsenic in sediment by biochar amendment influencing microbial community composition and dissolved organic matter content and composition[J]. Journal of Hazardous Materials, 2016, 311: 20-29. doi: 10.1016/j.jhazmat.2016.02.069 [38] WU S, FANG G D, WANG Y J, et al. Redox-active oxygen-containing functional groups in activated carbon facilitate microbial reduction of ferrihydrite[J]. Environmental Science & Technology, 2017, 51(17): 9709-9717. [39] PAN T T, CHEN B L. Facile fabrication of Shewanella@graphene core-shell material and its enhanced performance in nitrobenzene reduction[J]. Science of the Total Environment, 2019, 658: 324-332. doi: 10.1016/j.scitotenv.2018.12.028 [40] LI H, CAO W, WANG W B, et al. Carbon nanotubes mediating nano α-FeOOH reduction by Shewanella putrefaciens CN32 to enhance tetrabromobisphenol A removal[J]. Science of the Total Environment, 2021, 777: 146183. doi: 10.1016/j.scitotenv.2021.146183 [41] SCOTT D T, MCKNIGHT D M, BLUNT-HARRIS E L, et al. Quinone moieties act as electron acceptors in the reduction of humic substances by humics-reducing microorganisms[J]. Environmental Science & Technology, 1998, 32(19): 2984-2989. [42] NURMI J T, TRATNYEK P G. Electrochemical properties of natural organic matter (NOM), fractions of NOM, and model biogeochemical electron shuttles[J]. Environmental Science & Technology, 2002, 36(4): 617-624. [43] YANG P J, JIANG T, CONG Z Y, et al. Loss and increase of the electron exchange capacity of natural organic matter during its reduction and reoxidation: The role of quinone and nonquinone moieties[J]. Environmental Science & Technology, 2022, 56(10): 6744-6753. [44] RATASUK N, NANNY M A. Characterization and quantification of reversible redox sites in humic substances[J]. Environmental Science & Technology, 2007, 41(22): 7844-7850. [45] RAU J, KNACKMUSS H J, STOLZ A. Effects of different quinoid redox mediators on the anaerobic reduction of azo dyes by bacteria[J]. Environmental Science & Technology, 2002, 36(7): 1497-1504. [46] GOLDBERG E D. Black carbon in the environment: properties and distribution[M]. New York: J. Wiley, 1985. [47] LEHMANN J, RONDON M. Bio-char soil management on highly weathered soils in the humid tropics[J]. Biological Approaches to Sustainable Soil Systems, 2006, 113(517): e530. [48] UPHOFF N T, Biological approaches to sustainable soil systems[M]. Boca Raton: CRC/Taylor & Francis, 2006. [49] LEHMANN J, JOSEPH S. Biochar for environmental management: science, technology and implementation[M]. Second Edition. [50] 吕鹏, 李莲芳, 黄晓雅. 改性生物炭修复砷镉复合污染土壤研究进展[J]. 环境科学,2023, 44(7): 4077-4090. LYU P, LI L F, HUANG X Y. Modified Biochar for Remediation of Soil Contaminated with Arsenic and Cadmium: A Review[J]. Environmental Science,2023, 44(7): 4077-4090(in Chinese).
[51] LIU W J, JIANG H, YU H Q. Development of biochar-based functional materials: Toward a sustainable platform carbon material[J]. Chemical Reviews, 2015, 115(22): 12251-12285. doi: 10.1021/acs.chemrev.5b00195 [52] KLÜPFEL L, KEILUWEIT M, KLEBER M, et al. Redox properties of plant biomass-derived black carbon (biochar)[J]. Environmental Science & Technology, 2014, 48(10): 5601-5611. [53] TANG Y, ALAM M S, KONHAUSER K O, et al. Influence of pyrolysis temperature on production of digested sludge biochar and its application for ammonium removal from municipal wastewater[J]. Journal of Cleaner Production, 2019, 209: 927-936. doi: 10.1016/j.jclepro.2018.10.268 [54] CHEN B L, ZHOU D D, ZHU L Z. Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures[J]. Environmental Science & Technology, 2008, 42(14): 5137-5143. [55] SUN T R, LEVIN B D A, SCHMIDT M P, et al. Simultaneous quantification of electron transfer by carbon matrices and functional groups in pyrogenic carbon[J]. Environmental Science & Technology, 2018, 52(15): 8538-8547. [56] JIANG D Q, LI B K. Granular activated carbon single-chamber microbial fuel cells (GAC-SCMFCs): A design suitable for large-scale wastewater treatment processes[J]. Biochemical Engineering Journal, 2009, 47(1/2/3): 31-37. [57] YAN J C, HAN L, GAO W G, et al. Biochar supported nanoscale zerovalent iron composite used as persulfate activator for removing trichloroethylene[J]. Bioresource Technology, 2015, 175: 269-274. doi: 10.1016/j.biortech.2014.10.103 [58] XU W Q, PIGNATELLO J J, MITCH W A. Role of black carbon electrical conductivity in mediating hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine (RDX) transformation on carbon surfaces by sulfides[J]. Environmental Science & Technology, 2013, 47(13): 7129-7136. [59] LU Y, XIE Q Q, TANG L, et al. The reduction of nitrobenzene by extracellular electron transfer facilitated by Fe-bearing biochar derived from sewage sludge[J]. Journal of Hazardous Materials, 2021, 403: 123682. doi: 10.1016/j.jhazmat.2020.123682 [60] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669. doi: 10.1126/science.1102896 [61] BALANDIN A A, GHOSH S, BAO W Z, et al. Superior thermal conductivity of single-layer graphene[J]. Nano Letters, 2008, 8(3): 902-907. doi: 10.1021/nl0731872 [62] LEE C G, WEI X D, KYSAR J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science, 2008, 321(5887): 385-388. doi: 10.1126/science.1157996 [63] JIANG Y F, YANG L J, SUN T, et al. Significant contribution of intrinsic carbon defects to oxygen reduction activity[J]. ACS Catalysis, 2015, 5(11): 6707-6712. doi: 10.1021/acscatal.5b01835 [64] LIU G F, DONG B, ZHOU J T, et al. Enhanced bioreduction of nitrobenzene by reduced graphene oxide materials: Effects of surface modification and coexisting soluble electron shuttles[J]. Environmental Science and Pollution Research, 2017, 24(34): 26874-26880. doi: 10.1007/s11356-017-0673-z [65] TORAL-SÁNCHEZ E, RANGEL-MENDEZ J R, ASCACIO VALDÉS J A, et al. Tailoring partially reduced graphene oxide as redox mediator for enhanced biotransformation of iopromide under methanogenic and sulfate-reducing conditions[J]. Bioresource Technology, 2017, 223: 269-276. doi: 10.1016/j.biortech.2016.10.062 [66] ZHANG P, ZHOU P, PENG J L, et al. Insight into metal-free carbon catalysis in enhanced permanganate oxidation: Changeover from electron donor to electron mediator[J]. Water Research, 2022, 219: 118626. doi: 10.1016/j.watres.2022.118626 [67] TIAN S Q, WANG L, LIU Y L, et al. Enhanced permanganate oxidation of sulfamethoxazole and removal of dissolved organics with biochar: Formation of highly oxidative manganese intermediate species and in situ activation of biochar[J]. Environmental Science & Technology, 2019, 53(9): 5282-5291. [68] JIANG M, FENG L Y, ZHENG X, et al. Bio-denitrification performance enhanced by graphene-facilitated iron acquisition[J]. Water Research, 2020, 180: 115916. doi: 10.1016/j.watres.2020.115916 [69] IGARASHI K, MIYAKO E, KATO S. Direct interspecies electron transfer mediated by graphene oxide-based materials[J]. Frontiers in Microbiology, 2020, 10: 3068. doi: 10.3389/fmicb.2019.03068 [70] 邹龙. 基于纳米结构阳极的腐败希瓦氏菌胞外电子传递机理研究[D]. 重庆: 西南大学, 2016. ZOU L. Extracellular electron transfer mechanism of Shewanella putrefaciens on nanostructured anodes[D]. Chongqing: Southwest University, 2016(in Chinese).
[71] SHI L J, LI X, TUO Y X, et al. Microwave-assisted hydrogen releasing from liquid organic hydride over Pt/CNT catalyst: Effects of oxidation treatment of CNTs[J]. Catalysis Today, 2016, 276: 121-127. doi: 10.1016/j.cattod.2015.12.024 [72] LU Y, ZHANG S J, LIU Q, et al. Nitrobenzene reduction promoted by the integration of carbon nanotubes and Geobacter sulfurreducens[J]. Environmental Pollution, 2023, 325: 121444. doi: 10.1016/j.envpol.2023.121444 [73] YAN F F, HE Y R, WU C, et al. Carbon nanotubes alter the electron flow route and enhance nitrobenzene reduction by Shewanella oneidensis MR-1[J]. Environmental Science & Technology Letters, 2014, 1(1): 128-132. [74] 王贺飞. 生物炭强化希瓦氏菌还原转化硝基苯类化合物的机制[D]. 杭州: 浙江大学, 2020. WANG H F. Mechanisms for pyrogenic carbon-enhanced bioreduction of nitroaromatic compounds by Shewanella[D]. Hangzhou: Zhejiang University, 2020(in Chinese).
[75] SHI Y F, DAI Y C, LIU Z W, et al. Light-induced variation in environmentally persistent free radicals and the generation of reactive radical species in humic substances[J]. Frontiers of Environmental Science & Engineering, 2020, 14(6): 1-10. [76] YUAN Y, BOLAN N, PRÉVOTEAU A, et al. Applications of biochar in redox-mediated reactions[J]. Bioresource Technology, 2017, 246: 271-281. doi: 10.1016/j.biortech.2017.06.154 [77] WANG G J, XING Y, LIU G H, et al. Poorly conductive biochar boosting extracellular electron transfer for efficient volatile fatty acids oxidation via redox-mediated mechanism[J]. Science of the Total Environment, 2022, 809: 151113. doi: 10.1016/j.scitotenv.2021.151113 [78] 李爱琴, 唐宏建, 王阳峰. 环境中铬污染的生态效应及其防治[J]. 中国环境管理干部学院学报, 2006, 16(1): 74-77. doi: 10.13358/j.issn.1008-813x.2006.01.023 LI A Q, TANG H J, WANG Y F. Ecological effect and prevention of chromium pollution in the environment[J]. Journal of Environmental Management College of China, 2006, 16(1): 74-77(in Chinese). doi: 10.13358/j.issn.1008-813x.2006.01.023
[79] GU B H, CHEN J. Enhanced microbial reduction of Cr(VI) and U(VI) by different natural organic matter fractions[J]. Geochimica et Cosmochimica Acta, 2003, 67(19): 3575-3582. doi: 10.1016/S0016-7037(03)00162-5 [80] ZHOU Y, DUAN J T, JIANG J, et al. Effect of TOC concentration of humic substances as an electron shuttle on redox functional groups stimulating microbial Cr(VI) reduction[J]. International Journal of Environmental Research and Public Health, 2022, 19(5): 2600. doi: 10.3390/ijerph19052600 [81] YU C, ZHU X X, MOHAMED A, et al. Enhanced Cr(VI) bioreduction by biochar: Insight into the persistent free radicals mediated extracellular electron transfer[J]. Journal of Hazardous Materials, 2023, 442: 129927. doi: 10.1016/j.jhazmat.2022.129927 [82] SMEDLEY P L, KINNIBURGH D G. A review of the source, behaviour and distribution of arsenic in natural waters[J]. Applied Geochemistry, 2002, 17(5): 517-568. doi: 10.1016/S0883-2927(02)00018-5 [83] 于云江, 王菲菲, 房吉敦, 等. 环境砷污染对人体健康影响的研究进展[J]. 环境与健康杂志, 2007, 24(3): 181-183. doi: 10.3969/j.issn.1001-5914.2007.03.026 YU Y J, WANG F F, FANG J D, et al. Advance in research on environmental arsenic pollution to human health[J]. Journal of Environment and Health, 2007, 24(3): 181-183(in Chinese). doi: 10.3969/j.issn.1001-5914.2007.03.026
[84] JIANG J, BAUER I, PAUL A, et al. Arsenic redox changes by microbially and chemically formed semiquinone radicals and hydroquinones in a humic substance model quinone[J]. Environmental Science & Technology, 2009, 43(10): 3639-3645. [85] ZHANG W X, YANG Q, LUO Q H, et al. Laccase-Carbon nanotube nanocomposites for enhancing dyes removal[J]. Journal of Cleaner Production, 2020, 242: 118425. doi: 10.1016/j.jclepro.2019.118425 [86] VAN DER ZEE F P, BOUWMAN R H M, STRIK D P B T B, et al. Application of redox mediators to accelerate the transformation of reactive azo dyes in anaerobic bioreactors[J]. Biotechnology and Bioengineering, 2001, 75(6): 691-701. doi: 10.1002/bit.10073 [87] COLUNGA A, RANGEL-MENDEZ J R, CELIS L B, et al. Graphene oxide as electron shuttle for increased redox conversion of contaminants under methanogenic and sulfate-reducing conditions[J]. Bioresource Technology, 2015, 175: 309-314. doi: 10.1016/j.biortech.2014.10.101 [88] TAN W B, WANG L, YU H X, et al. Accelerated microbial reduction of azo dye by using biochar from iron-rich-biomass pyrolysis[J]. Materials, 2019, 12(7): 1079 doi: 10.3390/ma12071079 [89] MENEZES O, KOCAMAN K, WONG S, et al. Quinone moieties link the microbial respiration of natural organic matter to the chemical reduction of diverse nitroaromatic compounds[J]. Environmental Science & Technology, 2022, 56(13): 9387-9397. [90] BHUSHAN B, HALASZ A, HAWARI J. Effect of iron(III), humic acids and anthraquinone-2, 6-disulfonate on biodegradation of cyclic nitramines by Clostridium sp. EDB2[J]. Journal of Applied Microbiology, 2006, 100(3): 555-563. doi: 10.1111/j.1365-2672.2005.02819.x [91] 王楠, 周宇齐, 姜子叶, 等. 还原-氧化协同降解全/多卤代有机污染物[J]. 化学进展, 2022, 34(12): 2667-2685. WANG N, ZHOU Y Q, JIANG Z Y, et al. Synergistically consecutive reduction and oxidation of per-and poly-halogenated organic pollutants[J]. Progress in Chemistry, 2022, 34(12): 2667-2685(in Chinese).