-
2022年5月,国务院发布《新污染治理行动方案》,吹响了新污染物全面管控的号角. 氯代有机污染物(chlorinated organic pollutants,COPs)是持久性有机污染物中的一种,属于新污染物管控范畴. 因C—Cl键的存在,COPs分子结构稳定,很难自然降解;另外,氯代有机污染物脂溶性较强,生物易富集,在痕量水平具有“三致效应”,环境风险高. COPs污染的处理,目前有氧化法和还原法两种. 氧化法主要通过焚烧、光催化氧化[1]和芬顿(Fenton)氧化等技术实现,可将COPs转化为无毒无害的CO2,H2O和氯离子;还原法则主要利用零价铁(Fe0)[2]和H2[3]等具有还原性化学试剂,以Fe0作为电子供体,COPs通过Fe0表面的氧化还原反应得到电子实现脱氯. 近年来,电催化加氢脱氯(electrocatalytic hydrodechlorination,EHDC)技术是还原法的一种,只是它通过电源驱动电子的转移,无需添加化学药剂,因此逐渐受到研究者的关注,它的主要优势在于:(1)反应条件温和,多在常温常压下进行;(2)过程及产物可控,降低有毒副产物产生的风险;(3)设备简便、无需额外化学试剂;(4)低二次污染风险.
目前,EHDC领域主要集中在高效、稳定催化剂的研发和脱氯机理的解析. 催化剂是EHDC技术的核心,对电极/污染物界面电子转移速率、活性物种产生速率、污染物活化、污染物吸脱附等过程有决定性影响. 设计高活性和高稳定性的电催化材料处理水体和废水中的COPs仍是研究热点和长期目标. 过渡金属被发现拥有较高的EHDC活性,通过形貌尺寸、电子结构、晶格应变、界面效应等策略进一步调控,可提高催化剂活性、选择性和耐久性. 本文针对EHDC领域中金属基催化剂的类型、性能以及Pd基催化剂调控策略等领域的研究进展进行了综述,并总结电催化技术工业化应用现存的壁垒,提出了该技术可能的发展前景.
电催化氢解脱氯反应研究进展及应用可行性分析
Review on the progress and evaluation on the application feasibility of electrocatalytic hydrodechlorination technology in detoxificiation of chlorinated organic pollutants
-
摘要: 氯代有机物是一类重要的化工原料和中间体,广泛应用于医药、农药、染料等领域,而大量的使用致使其环境暴露量增加,造成污染. 因碳-氯键(C—Cl)的存在,氯代有机污染物(chlorinated organic pollutants,COPs)分子结构稳定,难自然降解,易生物累积且具三致效应,环境风险极高. 电催化氢解脱氯(electrocatalytic hydrodechlorination,EHDC)是目前处理水体COPs的热点技术,其通过在催化剂表面原位电解水形成活性氢(H*)攻击C—Cl键,使氯原子脱落转化为Cl−,C—Cl键转化为C—H键,从而大大减小COPs分子毒性和稳定性,增加废水可生化性. 相比以Fe0或H2驱动的氢解脱氯技术,EHDC技术主要优势在于:(1)反应条件温和,过程可控;(2)无需额外添加化学试剂;(3)反应选择性高,毒副产物少. 金属钯(Pd)具有独特的电子轨道,吸附及活化C—Cl键能力强,同时在产H*方面具有显著优势,因此被广泛用于EHDC. 本文重点综述了EHDC领域研究者在催化剂筛选、电子转移路径、表界面反应机制及Pd基催化剂性能调控策略等方面的研究进展,总结了电催化技术推广应用现存的壁垒,提出了该技术可能的发展前景.Abstract: The massive use of the chlorinated organic compounds in the pharmaceutical, pesticide and dye industries has led to their overexposure in environment. Due to the bearing carbon-chlorine (C-Cl) bonds, chlorinated organic pollutants (COPs) are generally chemically stable and highly resistant to natural degradation. They are also highly toxic, carcinogenic and bio-accumulative, thus delivering significant environmental risks. Electrocatalytic hydrodechlorination (EHDC) represents a promising technology for COPs treatment. It proceeds by the in-situ generation of atomic hydrogen (H*) on the catalyst surface via water dissociation. These H* are highly active for the hydrodechlorination of C—Cl bonds, which enable the conversion of the C—Cl bond and Cl atom to the C—H bond and Cl−, respectively. Overall, the EHDC process can significantly reduce the molecular toxicity and chemical stability of COPs, and improve the biodegradability of the wastewater. Compared to the hydrodechlorination technology driven by Fe0 or H2, EHDC technology is superior in the aspects of (1) mild reaction conditions and controllable process, (2) low chemical input and (3) high reaction selectivity and few yield of toxic by-products. Palladium metal (Pd) has been preferably developed as EHDC catalyst, owing to its robust performance in H* generation, adsorption and activation of C—Cl bonds. This work reviews the research progress achieved in the EHDC field, including the rules to design active catalysts, the insight into the electron transfer path and the interfacial reaction mechanism as well as the strategies to tune the performance of Pd-based catalysts. We also summarize the remaining challenges to the scale application of EHDC technology in practical environmental pollution abatement, and put forward the possible development prospects for this technology.
-
Key words:
- COPs /
- Pd-based catalysts /
- catalyst modulation /
- application feasibility analysis.
-
-
[1] XIONG L Q, TANG J W. Strategies and challenges on selectivity of photocatalytic oxidation of organic substances[J]. Advanced Energy Materials, 2021, 11(8): 2003216. doi: 10.1002/aenm.202003216 [2] MENG F X, XU J, DAI H W, et al. Even incorporation of nitrogen into Fe0 nanoparticles as crystalline Fe4N for efficient and selective trichloroethylene degradation[J]. Environmental Science & Technology, 2022, 56(7): 4489-4497. [3] WEIDLICH T, KAMENICKÁ B, MELÁNOVÁ K, et al. Hydrodechlorination of different chloroaromatic compounds at room temperature and ambient pressure—Differences in reactivity of Cu- and Ni-based Al alloys in an alkaline aqueous solution[J]. Catalysts, 2020, 10(9): 994. doi: 10.3390/catal10090994 [4] CHAPLIN B P, REINHARD M, SCHNEIDER W F, et al. Critical review of Pd-based catalytic treatment of priority contaminants in water[J]. Environmental Science & Technology, 2012, 46(7): 3655-3670. [5] XU J, LIU X, LOWRY G V, et al. Dechlorination mechanism of 2, 4-dichlorophenol by magnetic MWCNTs supported Pd/Fe nanohybrids: Rapid adsorption, gradual dechlorination, and desorption of phenol[J]. ACS Applied Materials & Interfaces, 2016, 8(11): 7333-7342. [6] XU J, CAO Z, LIU X, et al. Preparation of functionalized Pd/Fe-Fe3O4@MWCNTs nanomaterials for aqueous 2, 4-dichlorophenol removal: Interactions, influence factors, and kinetics[J]. Journal of Hazardous Materials, 2016, 317: 656-666. doi: 10.1016/j.jhazmat.2016.04.063 [7] ZHAO Z F, YU L, ZHENG L X, et al. TiO2@PDA inorganic-organic core-shell skeleton supported Pd nanodots for enhanced electrocatalytic hydrodechlorination[J]. Journal of Hazardous Materials, 2022, 435: 128998. doi: 10.1016/j.jhazmat.2022.128998 [8] LIU R, ZHAO H C, ZHAO X Y, et al. Defect sites in ultrathin Pd nanowires facilitate the highly efficient electrochemical hydrodechlorination of pollutants by H*ads[J]. Environmental Science & Technology, 2018, 52(17): 9992-10002. [9] JIANG G M, LI X J, SHEN Y, et al. Mechanistic insight into the electrocatalytic hydrodechlorination reaction on palladium by a facet effect study[J]. Journal of Catalysis, 2020, 391: 414-423. doi: 10.1016/j.jcat.2020.09.008 [10] LOU Y Y, XIAO C, FANG J Y, et al. High activity of step sites on Pd nanocatalysts in electrocatalytic dechlorination[J]. Physical Chemistry Chemical Physics:PCCP, 2022, 24(6): 3896-3904. doi: 10.1039/D1CP04975E [11] HUANG B B, ZHU Y Y, LI J, et al. Uncovering the intrinsic relationship of electrocatalysis and molecular electrochemistry for dissociative electron transfer to polychloroethanes at silver cathode[J]. Electrochimica Acta, 2017, 231: 590-600. doi: 10.1016/j.electacta.2017.02.055 [12] MA C A, LI M C, LIU Y N, et al. in situ FTIR studies on the electrochemical hydrodechlorination of 3, 4, 5, 6-tetrachloropicolinic acid on Ag cathode[J]. Electrochimica Acta, 2010, 55(9): 3171-3174. doi: 10.1016/j.electacta.2009.12.086 [13] LOU Y Y, HE W Y, VERLATO E, et al. Ni-coated graphite felt modified with Ag nanoparticles: A new electrode material for electro-reductive dechlorination[J]. Journal of Electroanalytical Chemistry, 2019, 849: 113357. doi: 10.1016/j.jelechem.2019.113357 [14] LIU B Z, DING C, XIAO B, et al. Electrocatalytic dechlorination of chloroacetic acids on silver nanodendrites electrode[J]. Materials Science and Engineering:C, 2014, 37: 108-112. doi: 10.1016/j.msec.2014.01.015 [15] MAO R, LI N, LAN H C, et al. Dechlorination of trichloroacetic acid using a noble metal-free graphene-Cu foam electrode via direct cathodic reduction and atomic H[J]. Environmental Science & Technology, 2016, 50(7): 3829-3837. [16] GAN G Q, ZHANG X Q, BU S Y, et al. Metal-nitrogen-carbon single-atom aerogels as self-supporting electrodes for dechlorination of 1, 2-dichloroethane[J]. Advanced Functional Materials, 2022, 32(48): 2206263. doi: 10.1002/adfm.202206263 [17] LIU B, LI G H, MUMFORD K G, et al. Low permeability zone remediation of trichloroethene via coupling electrokinetic migration with in situ electrochemical hydrodechlorination[J]. Chemosphere, 2020, 250: 126209. doi: 10.1016/j.chemosphere.2020.126209 [18] BARANTON S, COUTANCEAU C. Nickel cobalt hydroxide nanoflakes as catalysts for the hydrogen evolution reaction[J]. Applied Catalysis B:Environmental, 2013, 136/137: 1-8. doi: 10.1016/j.apcatb.2013.01.051 [19] YIN L F, DAI Y R, NIU J F, et al. Rapid dechlorination of chlorophenols in aqueous solution by[Ni| Cu]microcell[J]. Journal of Hazardous Materials, 2012, 209/210: 414-420. doi: 10.1016/j.jhazmat.2012.01.044 [20] LIU L, CHEN Y R, LI S L, et al. Enhanced electrocatalytic cathodic degradation of 2, 4-dichlorophenoxyacetic acid based on a synergistic effect obtained from Co single atoms and Cu nanoclusters[J]. Applied Catalysis B:Environmental, 2023, 332: 122748. doi: 10.1016/j.apcatb.2023.122748 [21] XU Y H, YAO Z Q, MAO Z C, et al. Single-Ni-atom catalyzes aqueous phase electrochemical reductive dechlorination reaction[J]. Applied Catalysis B:Environmental, 2020, 277: 119057. doi: 10.1016/j.apcatb.2020.119057 [22] LI N, SONG X Z, WANG L, et al. Single-atom cobalt catalysts for electrocatalytic hydrodechlorination and oxygen reduction reaction for the degradation of chlorinated organic compounds[J]. ACS Applied Materials & Interfaces, 2020, 12(21): 24019-24029. [23] WANG J, FAN S Y, LI X Y, et al. Rod-like nanostructured Cu-co spinel with rich oxygen vacancies for efficient electrocatalytic dechlorination[J]. ACS Applied Materials & Interfaces, 2023, 15(10): 12915-12923. [24] WANG Q, DU J, MA Y Y, et al. Noble-metal-free 3D hierarchical Ni-WC heterostructure with enhanced interfacial charge transfer for efficient electrocatalytic hydrodechlorination[J]. Chemical Engineering Journal, 2023, 451: 139107. doi: 10.1016/j.cej.2022.139107 [25] SHU X Y, YANG Q, YAO F B, et al. Electrocatalytic hydrodechlorination of 4-chlorophenol on Pd supported multi-walled carbon nanotubes particle electrodes[J]. Chemical Engineering Journal, 2019, 358: 903-911. doi: 10.1016/j.cej.2018.10.095 [26] YANG L M, CHEN Z L, CUI D, et al. Ultrafine palladium nanoparticles supported on 3D self-supported Ni foam for cathodic dechlorination of florfenicol[J]. Chemical Engineering Journal, 2019, 359: 894-901. doi: 10.1016/j.cej.2018.11.099 [27] ZHANG Z Q, CHEN Y G, ZHOU L Q, et al. The simplest construction of single-site catalysts by the synergism of micropore trapping and nitrogen anchoring[J]. Nature Communications, 2019, 10: 1657. doi: 10.1038/s41467-019-09596-x [28] YANG K X, KONG Y J, HUANG L Z, et al. Catalytic elimination of chlorinated organic pollutants by emerging single-atom catalysts[J]. Chemical Engineering Journal, 2022, 450: 138467. doi: 10.1016/j.cej.2022.138467 [29] LI J C, LI M, LI J, et al. Hydrodechlorination and deep hydrogenation on single-palladium-atom-based heterogeneous catalysts[J]. Applied Catalysis B:Environmental, 2021, 282: 119518. doi: 10.1016/j.apcatb.2020.119518 [30] CHU C H, HUANG D H, GUPTA S, et al. Neighboring Pd single atoms surpass isolated single atoms for selective hydrodehalogenation catalysis[J]. Nature Communications, 2021, 12: 5179. doi: 10.1038/s41467-021-25526-2 [31] HUANG D H, KIM D J, RIGBY K, et al. Elucidating the role of single-atom Pd for electrocatalytic hydrodechlorination[J]. Environmental Science & Technology, 2021, 55(19): 13306-13316. [32] MAO Z C, LIU L H, YANG H B, et al. Atomically dispersed Pd electrocatalyst for efficient aqueous phase dechlorination reaction[J]. Electrochimica Acta, 2021, 391: 138886. doi: 10.1016/j.electacta.2021.138886 [33] CHEN M, SHU S, LI J X, et al. Activating palladium nanoparticles via a Mott-Schottky heterojunction in electrocatalytic hydrodechlorination reaction[J]. Journal of Hazardous Materials, 2020, 389: 121876. doi: 10.1016/j.jhazmat.2019.121876 [34] JIANG K X, SHI X L, CHEN M, et al. Optimizing the metal-support interactions at the Pd-polymer carbon nitride Mott-Schottky heterojunction interface for an enhanced electrocatalytic hydrodechlorination reaction[J]. Journal of Hazardous Materials, 2021, 411: 125119. doi: 10.1016/j.jhazmat.2021.125119 [35] LOU Z M, LI Y Z, ZHOU J S, et al. TiC doped palladium/nickel foam cathode for electrocatalytic hydrodechlorination of 2, 4-DCBA: Enhanced electrical conductivity and reactive activity[J]. Journal of Hazardous Materials, 2019, 362: 148-159. doi: 10.1016/j.jhazmat.2018.08.066 [36] ZHOU J S, LOU Z M, XU J, et al. Enhanced electrocatalytic dechlorination by dispersed and moveable activated carbon supported palladium catalyst[J]. Chemical Engineering Journal, 2019, 358: 1176-1185. doi: 10.1016/j.cej.2018.10.098 [37] ZHOU J S, LOU Z M, YANG K L, et al. Electrocatalytic dechlorination of 2, 4-dichlorobenzoic acid using different carbon-supported palladium moveable catalysts: Adsorption and dechlorination activity[J]. Applied Catalysis B:Environmental, 2019, 244: 215-224. doi: 10.1016/j.apcatb.2018.11.052 [38] LI J X, PENG Y Y, ZHANG W D, et al. Hierarchical Pd/MnO2 nanosheet array supported on Ni foam: An advanced electrode for electrocatalytic hydrodechlorination reaction[J]. Applied Surface Science, 2020, 509: 145369. doi: 10.1016/j.apsusc.2020.145369 [39] LOU Z M, ZHOU J S, SUN M, et al. MnO2 enhances electrocatalytic hydrodechlorination by Pd/Ni foam electrodes and reduces Pd needs[J]. Chemical Engineering Journal, 2018, 352: 549-557. doi: 10.1016/j.cej.2018.07.057 [40] LI J J, WANG Y, ZHAO B, et al. Unraveling kinetics and mechanism of electrocatalytic hydrodechlorination of chlorinated PPCPs by nickel-cobalt metal organic framework supported palladium composite electrode[J]. Applied Catalysis B:Environmental, 2023, 332: 122754. doi: 10.1016/j.apcatb.2023.122754 [41] WANG K F, SHU S, CHEN M, et al. Pd-TiO2 Schottky heterojunction catalyst boost the electrocatalytic hydrodechlorination reaction[J]. Chemical Engineering Journal, 2020, 381: 122673. doi: 10.1016/j.cej.2019.122673 [42] LOU Z M, YU C C, WEN X F, et al. Construction of Pd nanoparticles/two-dimensional Co-MOF nanosheets heterojunction for enhanced electrocatalytic hydrodechlorination[J]. Applied Catalysis B:Environmental, 2022, 317: 121730. doi: 10.1016/j.apcatb.2022.121730 [43] LI J X, CHEN Y J, BAI R Y, et al. Construction of Pd/Ni2P-Ni foam nanosheet array electrode by in-situ phosphatization-electrodeposition strategy for synergistic electrocatalytic hydrodechlorination[J]. Chemical Engineering Journal, 2022, 435: 134932. doi: 10.1016/j.cej.2022.134932 [44] FU C H, SHU S, HU L, et al. Electrocatalytic nitrate reduction on bimetallic Palladium-Copper Nanowires: Key surface structure for selective dinitrogen formation[J]. Chemical Engineering Journal, 2022, 435: 134969. doi: 10.1016/j.cej.2022.134969 [45] PENG Y Y, CUI M Y, ZHANG Z Y, et al. Bimetallic composition-promoted electrocatalytic hydrodechlorination reaction on silver–palladium alloy nanoparticles[J]. ACS Catalysis, 2019, 9(12): 10803-10811. doi: 10.1021/acscatal.9b02282 [46] ZHOU Y J, ZHANG G, JI Q H, et al. Enhanced stabilization and effective utilization of atomic hydrogen on Pd-In nanoparticles in a flow-through electrode[J]. Environmental Science & Technology, 2019, 53(19): 11383-11390. [47] LEE J H, KATTEL S, JIANG Z, et al. Tuning the activity and selectivity of electroreduction of CO2 to synthesis gas using bimetallic catalysts[J]. Nature Communications, 2019, 10(1): 3724. doi: 10.1038/s41467-019-11352-0 [48] ZHANG J, HU L, QIAN Y, et al. Synthesis of intermetallic FePtPd nanoparticles and their enhanced catalysis for electro-oxidation of methanol[J]. Surfaces and Interfaces, 2022, 35: 102485. doi: 10.1016/j.surfin.2022.102485 [49] FU W Y, SHU S, LI J X, et al. Identifying the rate-determining step of the electrocatalytic hydrodechlorination reaction on palladium nanoparticles[J]. Nanoscale, 2019, 11(34): 15892-15899. doi: 10.1039/C9NR04634H [50] CHEN Y J, FENG C, WANG W H, et al. Electronic structure engineering of bimetallic Pd-Au alloy nanocatalysts for improving electrocatalytic hydrodechlorination performance[J]. Separation and Purification Technology, 2022, 289: 120731. doi: 10.1016/j.seppur.2022.120731 [51] LI J, CHEN J X, WANG Q A, et al. Controllable increase of boron content in B-Pd interstitial nanoalloy to boost the oxygen reduction activity of palladium[J]. Chemistry of Materials, 2017, 29(23): 10060-10067. doi: 10.1021/acs.chemmater.7b03732 [52] LUO F, ZHANG Q, YU X X, et al. Palladium phosphide as a stable and efficient electrocatalyst for overall water splitting[J]. Angewandte Chemie, 2018, 130(45): 15078-15083. doi: 10.1002/ange.201810102 [53] WANG P, SHI X L, FU C H, et al. Strong pyrrolic-N-Pd interactions boost the electrocatalytic hydrodechlorination reaction on palladium nanoparticles[J]. Nanoscale, 2020, 12(2): 843-850. doi: 10.1039/C9NR07528C [54] MA L, WANG C M, GONG M, et al. Control over the branched structures of platinum nanocrystals for electrocatalytic applications[J]. ACS Nano, 2012, 6(11): 9797-9806. doi: 10.1021/nn304237u [55] ZHOU J S, LOU Z M, WANG Z N, et al. Electrocatalytic dechlorination of 2, 4-DCBA using CTAB functionalized Pd/GAC movable granular catalyst: Role of adsorption in catalysis[J]. Chemical Engineering Journal, 2021, 414: 128758. doi: 10.1016/j.cej.2021.128758 [56] JIANG G M, SHI X L, CUI M Y, et al. Surface ligand environment boosts the electrocatalytic hydrodechlorination reaction on palladium nanoparticles[J]. ACS Applied Materials & Interfaces, 2021, 13(3): 4072-4083. [57] FAN Z M, ZHAO H C, WANG K F, et al. Enhancing electrocatalytic hydrodechlorination through interfacial microenvironment modulation[J]. Environmental Science & Technology, 2023, 57(3): 1499-1509. [58] GUO X G, FACCHETTI A. The journey of conducting polymers from discovery to application[J]. Nature Materials, 2020, 19(9): 922-928. doi: 10.1038/s41563-020-0778-5 [59] XU G R, LIU F Y, LIU Z H, et al. Ethanol-tolerant polyethyleneimine functionalized palladium nanowires in alkaline media: The “molecular window gauze” induced the selectivity for the oxygen reduction reaction[J]. Journal of Materials Chemistry A, 2015, 3(42): 21083-21089. doi: 10.1039/C5TA06644A [60] XU G R, BAI J A, YAO L, et al. Polyallylamine-functionalized platinum tripods: Enhancement of hydrogen evolution reaction by proton carriers[J]. ACS Catalysis, 2017, 7(1): 452-458. doi: 10.1021/acscatal.6b03049 [61] XU G R, BAI J, JIANG J X, et al. Polyethyleneimine functionalized platinum superstructures: Enhancing hydrogen evolution performance by morphological and interfacial control[J]. Chemical Science, 2017, 8(12): 8411-8418. doi: 10.1039/C7SC04109H [62] GAO M T, TAN H, ZHU P Q, et al. Why phenol is selectively hydrogenated to cyclohexanol on Ru (0001): An experimental and theoretical study[J]. Applied Surface Science, 2021, 558: 149880. doi: 10.1016/j.apsusc.2021.149880 [63] GU Z N, ZHANG Z Y, NI N, et al. Simultaneous phenol removal and resource recovery from phenolic wastewater by electrocatalytic hydrogenation[J]. Environmental Science & Technology, 2022, 56(7): 4356-4366. [64] MORALES-GUIO C G, STERN L A, HU X L. Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution[J]. Chemical Society Reviews, 2014, 43(18): 6555-6569. doi: 10.1039/C3CS60468C [65] YANG K C, ZHAO Y X, ZHOU X, et al. “Self-degradation” of 2-chlorophenol in a sequential cathode-anode cascade mode bioelectrochemical system[J]. Water Research, 2021, 206: 117740. doi: 10.1016/j.watres.2021.117740 [66] SONG Y, GUTIÉRREZ O Y, HERRANZ J, et al. Aqueous phase electrocatalysis and thermal catalysis for the hydrogenation of phenol at mild conditions[J]. Applied Catalysis B:Environmental, 2016, 182: 236-246. doi: 10.1016/j.apcatb.2015.09.027 [67] WANG S, ZHU T H, JIANG N, et al. Hydrogenation of phenol to cyclohexanol using carbon encapsulated Ni–Co alloy nanoparticles[J]. Reaction Chemistry & Engineering, 2022, 7(2): 429-441. [68] HU L, SHI L, SHEN F, et al. Electrocatalytic hydrodechlorination system with antiscaling and anti-chlorine poisoning features for salt-laden wastewater treatment[J]. Water Research, 2022, 225: 119210. doi: 10.1016/j.watres.2022.119210 [69] MAO R, ZHAO X, LAN H C, et al. Graphene-modified Pd/C cathode and Pd/GAC particles for enhanced electrocatalytic removal of bromate in a continuous three-dimensional electrochemical reactor[J]. Water Research, 2015, 77: 1-12. doi: 10.1016/j.watres.2015.03.002 [70] JIANG G M, WANG K F, LI J Y, et al. Electrocatalytic hydrodechlorination of 2, 4-dichlorophenol over palladium nanoparticles and its pH-mediated tug-of-war with hydrogen evolution[J]. Chemical Engineering Journal, 2018, 348: 26-34. doi: 10.1016/j.cej.2018.04.173 [71] GUO J X, ZHANG X Q, SUN Y F, et al. NiMoS3 nanorods as pH-tolerant electrocatalyst for efficient hydrogen evolution[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(10): 9006-9013.