-
2013年以来,有研究表明以PM2.5为首的大气污染过程在京津冀、汾渭平原和长三角等地区频繁发生[1-2],对我国生态环境,人体健康及社会经济造成巨大威胁[3-4]。目前,学者对大气PM2.5的研究主要集中在化学组分[5-6],污染成因和来源解析[7- 8]等方面。PM2.5的化学组分复杂,其中元素、碳质物和离子组分通常被测量以评估其对大气质量的不利影响及污染来源[9-12]。其中,水溶性粒离子质量浓度在PM2.5中的占比最高可达80%以上[13]。作为PM2.5的重要组分,其来源复杂,对颗粒物污染的形成具有重要驱动作用[14]。因此,研究PM2.5中水溶性离子浓度的变化特征对了解PM2.5污染物特征和来源具有重要意义。
水溶性无机离子主要成分是二次离子[5, 15],是造成城市大气能见度降低的主要原因[16],因受各地不同自然条件、能源结构及相关政策的影响,其质量浓度水平存在较大差异[17-18]。目前,很多学者通过研究大气中水溶性离子组成及季节变化特征,来了解颗粒物的形成和污染来源。 Wu等[19]研究得出,雾霾期和清洁期水溶性离子中NO3-、SO42−、NH4+占主导,新年烟花燃放期间,K+是最丰富的离子,其次是SO42−和Cl-,表明烟花燃烧可改变大气化学性质。Liu等[13]研究发现农民活动的周期性排放对北京市大气水溶性离子有显著贡献,同时密集的农业活动可导致区域沙尘。黄含含等[20]对西安市PM2.5中水溶性离子特征的研究表明,NO3-和NH4+质量浓度在秋冬季偏高,春夏季偏低,SO42−浓度春季最低,夏冬季较高,同时SNA在四季以不同的形式存在于大气中。
宝鸡市位于关中平原西部,南、西、北三面环山,典型的河谷地形及全年较大湿度等均不利于大气污染物的扩散,加之宝鸡市是我国重要的重工业城市,经济结构以工业为主。同时宝鸡市钛产业规模居全国之首、全球第二,被誉为“中国钛谷”,全市汽车产业总产值占全省三分之一,经济的迅速发展使得宝鸡市大气环境污染问题不容忽视。为了解宝鸡市大气颗粒物中水溶性离子的污染特征,对不同污染时段下水溶性离子的研究尤为必要。
本文研究宝鸡市秋季清洁时段和污染时段水溶性离子浓度水平,并结合后向轨迹和主成分分析-多元线性回归模型(PCA-MLR),阐明秋季PM2.5中水溶性离子的污染特征及来源,以期为宝鸡市进一步开展大气气溶胶研究提供基础数据,为制定PM2.5污染控制措施提供科学依据。
宝鸡市秋季清洁和污染时段水溶性离子污染特征及来源解析
Characteristics and sources of water-soluble ion pollution during cleaning and pollution periods in Baoji City in autumn
-
摘要: 为探究宝鸡市秋季大气PM2.5中水溶性离子的污染特征及来源,于2019年10月15日至11月14日分别对宝鸡市监测站、文理学院和陈仓区环保局的3个站点进行PM2.5样品采集,通过离子色谱仪得到水溶性离子质量浓度,分析了3个站点水溶性离子在清洁时段和污染时段的变化特征及来源。结果表明,三站点PM2.5的质量浓度陈仓区环保局>文理学院>宝鸡市监测站。清洁时段和污染时段PM2.5平均质量浓度分别为40.0 μg·m−3和100.1 μg·m−3,水溶性离子平均质量浓度分别为(13.7±7.7)μg·m−3和(57.8±15.0)μg·m−3。污染时段NO3−/SO42−值是清洁时段的1.6—1.8倍。污染越重,SNA(NO3−、SO42−和NH4+)质量浓度越大,占总水溶性离子和PM2.5的比例也越大。清洁时段,SNA主要以NH4HSO4形式存在,污染时段主要以(NH4)2SO4和NH4NO3的形式存。秋季大气PM2.5整体偏中性,污染加重,碱性加强。PCA-MLR模型分析得知,秋季水溶性离子污染主要来源有二次生成源、燃煤燃烧源和扬尘源,清洁时段主要污染来源为二次生成源,贡献率为61.3%,污染时段主要来源于二次生成及燃烧混合源,贡献率达到99.2%。轨迹聚类结果得出污染源主要为本地及周边传输。Abstract: In order to explore the pollution characteristics and sources of water-soluble ions in autumn atmospheric PM2.5 in Baoji City, and to study the difference between cleaning period and pollution period, PM2.5 samples were collected from Baoji Monitoring Station, College of Arts and Sciences and Chencang Environmental Protection Bureau from October 15, 2019 to November 14, 2019 and analyzed for water-soluble ions by ion chromatography. The variation characteristics and emission sources of water-soluble ions at the three sites during cleaning period and pollution period were then investigated. The results showed that the average concentration of PM2.5 in the three stations was 40.0 μg·m−3 and 100.1 μg·m−3 in the pollution period and clean period, respectively, at the > College of Arts and Sciences, Chencang District Environmental Protection Bureau, Baoji City. The average mass concentrations of water-soluble ions were(13.7±7.7)μg·m−3 and (57.8±15.0)μg·m−3 at the cleaning period and the pollution period, respectively. NO3− concentration was the highest at different periods, followed by SO42− and NH4+. The NO3−/SO42− values at the three stations during the polluted period increased by 1.6-1.8 times compared with the clean period. The heavier the pollution, the greater the mass concentration of SNA, and the greater the proportion of SNA in TWSIS and PM2.5. During the cleaning period, SNA mainly exists in the form of NH4HSO4, while during the pollution period, SNA mainly exists in the form of (NH4)2SO4 and NH4NO3.During the observation period, the overall atmospheric PM2.5 was neutral, pollution increased and acidity decreased slightly. PCA-MLR model analysis showed that the main sources of water-soluble ion pollution in autumn were secondary conversion, combustion and dust sources. The main pollution source in clean period was secondary generation source, with a contribution rate of 61.3%. The main pollution source in pollution period was secondary generation and combustion mixed sources, with an average contribution rate of 99.2%. According to the result of track clustering, the pollution is mainly caused by local and surrounding transportation.
-
Key words:
- Baoji /
- water-soluble ion /
- trajectory clustering /
- source apportionment
-
表 1 秋季大气PM2.5及水溶性离子质量浓度(μg·m−3)
Table 1. Atmospheric PM2.5 and water-soluble ion mass concentration in autumn
站点site NO3- SO42- NH4+ Ca2+ Na+ Cl- K+ Mg2+ TWSI PM2.5 监测站 11.1±11.7 5.4±4.3 4.1±4.6 0.4±0.3 0.4±0.1 0.7±0.3 0.3±0.1 0.1 22.4±3.6 49.9±30.1 文理学院 13.5±13.0 6.6±4.7 4.8±5.7 0.9±0.7 0.8±0.6 0.4±0.3 0.3±0.2 0.2±0.1 27.4±4.3 58.1±31.5 陈仓环保局 14.0±12.6 7.3±4.4 4.3±5.5 1.2±0.6 0.9±0.4 0.9±0.3 0.4±0.2 0.1±0.1 29.2±4.5 65.4±31.2 平均值 12.9±1.3 6.4±0.8 4.4±0.3 0.8±0.3 0.7±0.2 0.7±0.2 0.3 0.1 26.2±2.7 57.8±6.3 2012年秋季[29] 14.2±1.9 14.2±0.7 6.4±0.9 2.2±0.1 1.3±0.2 2.6±1.2 1.0±0.1 0.2±0.1 41.9±5.2 — 表 2 三站点清洁时段和污染时段SNA浓度水平及占比
Table 2. Concentration levels and proportions of SNA in cleaning period and pollution period of the three stations
污染等级
Class of pollution站点
Site离子质量浓度/(μg·m−3) Ion mass concentration (SNA/PM2.5)/% (SNA/ WSIIs)/% NO3-/SO42− NO3- SO42- NH4+ SNA 清洁时段 监测站 5.3±5.0 3.3±1.5 1.7±1.7 10.3±1.5 29.4 80.0 1.4 文理学院 7.0±5.0 4.1±1.5 1.8±2.0 12.9±2.1 31.5 84.5 1.6 陈仓环保局 6.7±4.2 4.9±1.3 1.1±0.9 12.7±2.3 26.5 78.8 1.3 平均值 6.3±4.7 4.1±1.4 1.5±1.5 11.9±2.0 29.1 81.1 1.4 污染时段 监测站 29.1±7.1 12.0±3.6 11.2±3.1 51.3±8.5 54.1 95.8 2.5 文理学院 33.9±7.9 13.9±3.9 13.7±3.7 61.5±9.5 57.9 95.6 2.5 陈仓环保局 31.9±7.6 13.5±3.7 12.2±4.7 57.6±9.0 53.6 94.0 2.4 平均值 31.6±7.3 13.1±3.6 11.6±5.0 56.3±9.1 55.2 95.1 2.4 2019秋季 三站点平均 12.9±1.3 6.4±0.8 4.4±0.3 23.7±2.2 41.0 90.1 2.0 2012秋季[29] 平均值 14.2±1.9 14.2±0.7 6.4±0.9 34.8±3.7 — 83.1 1.0 表 3 PM2.5及水溶性离子的相关系数矩阵
Table 3. Correlation coefficient matrix of PM2.5 and water-soluble ions
SO42− NO3− Cl− NH4+ Na+ K+ Mg2+ Ca2+ PM2.5 SO42− 1 NO3− 0.952** 1 Cl− 0.653** 0.612** 1 NH4+ 0.979** 0.986** 0.645** 1 Na+ 0.005 0.024 0.335* −0.014 1 K+ 0.825** 0.829** 0.684** 0.842** 0.208 1 Mg2+ −0.307 −0.180 0.050 −0.240 0.477** −0.266 1 Ca2+ 0.034 −0.017 0.407* 0.011 0.474** 0.327 0.085 1 PM2.5 0.951** 0.964** 0.721** 0.966** 0.109 0.916** −0.207 0.170 1 **表示在置信度P<0.01时,相关性显著;*表示置信度P<0.05,相关性显著.
** indicates that the correlation is significant when the confidence is P<0.01; * represents confidence P<0.05, indicating significant correlation.表 4 PM2.5中水溶性离子因子载荷矩阵
Table 4. Water soluble ion factor load matrix in PM2.5
离子组分
Ion components清洁时段Clean time 污染时段Pollution time PC1 PC2 PC3 PC1 PC2 SO42- 0.92 −0.14 0.18 0.84 −0.24 NO3- 0.90 −0.32 −0.04 0.998 0.02 Cl- 0.19 0.74 0.38 0.92 0.20 NH4+ 0.93 −0.32 0.04 0.95 −0.30 Na+ 0.55 0.62 −0.46 −0.16 0.86 K+ 0.49 −0.11 0.76 0.96 −0.11 Mg2+ 0.58 0.48 −0.57 0.21 0.59 Ca2+ −0.003 0.71 0.50 0.39 0.80 特征值 3.53 1.82 1.54 4.78 1.75 方差贡献率/% 39.2 25.4 21.5 57.5 24.1 累积方差贡献率/% 39.2 64.6 86.1 57.5 81.6 污染来源 二次生成 燃煤+扬尘 生物质燃烧 二次生成+燃烧 扬尘 贡献率 61.3% 29.8% 8.9% 99.2% 0.8% -
[1] 王跃思, 张军科, 王莉莉, 等. 京津冀区域大气霾污染研究意义、现状及展望 [J]. 地球科学进展, 2014, 29(3): 388-396. doi: 10.11867/j.issn.1001-8166.2014.03.0388 WANG Y S, ZHANG J K, WANG L L, et al. Researching significance, status and expectation of haze in Beijing-Tianjin-Hebei region [J]. Advances in Earth Science, 2014, 29(3): 388-396(in Chinese). doi: 10.11867/j.issn.1001-8166.2014.03.0388
[2] ZHENG G J, DUAN F K, SU H, et al. Exploring the severe winter haze in Beijing: The impact of synoptic weather, regional transport and heterogeneous reactions [J]. Atmospheric Chemistry and Physics, 2015, 15(6): 2969-2983. doi: 10.5194/acp-15-2969-2015 [3] MAJI K J, YE W F, ARORA M, et al. PM2.5 related health and economic loss assessment for 338 Chinese cities[J]. Environment International, 2018, 121(Pt 1): 392-403. [4] LIU F, TAN Q W, JIANG X, et al. Effects of relative humidity and PM2.5 chemical compositions on visibility impairment in Chengdu, China [J]. Journal of Environmental Sciences, 2019, 86: 15-23. doi: 10.1016/j.jes.2019.05.004 [5] HUANG F, ZHOU J B, CHEN N, et al. Chemical characteristics and source apportionment of PM2.5 in Wuhan, China [J]. Journal of Atmospheric Chemistry, 2019, 76(3): 245-262. doi: 10.1007/s10874-019-09395-0 [6] LI X R, WANG Y S, GUO X Q, et al. Seasonal variation and source apportionment of organic and inorganic compounds in PM2.5 and PM10 particulates in Beijing, China [J]. Journal of Environmental Sciences, 2013, 25(4): 741-750. doi: 10.1016/S1001-0742(12)60121-1 [7] LIU X Y, WANG M S, PAN X L, et al. Chemical formation and source apportionment of PM2.5 at an urban site at the southern foot of the Taihang mountains [J]. Journal of Environmental Sciences, 2021, 103: 20-32. doi: 10.1016/j.jes.2020.10.004 [8] 王德羿, 王体健, 韩军彩, 等. “2+26”城市大气重污染下PM2.5来源解析 [J]. 中国环境科学, 2020, 40(1): 92-99. doi: 10.3969/j.issn.1000-6923.2020.01.010 WANG D Y, WANG T J, HAN J C, et al. Source apportionment of PM2.5 under heavy air pollution conditions in “2+26” cities [J]. China Environmental Science, 2020, 40(1): 92-99(in Chinese). doi: 10.3969/j.issn.1000-6923.2020.01.010
[9] SHEN Z X, SUN J, CAO J J, et al. Chemical profiles of urban fugitive dust PM2.5 samples in Northern Chinese cities [J]. Science of the Total Environment, 2016, 569/570: 619-626. doi: 10.1016/j.scitotenv.2016.06.156 [10] 周变红, 王锦, 曹夏, 等. 宝鸡市冬季PM2.5中元素污染特征及健康风险评估 [J]. 生态毒理学报, 2020, 15(4): 299-311. ZHOU B H, WANG J, CAO X, et al. Characteristics and health risk assessments of elements in PM2.5 during winter in Baoji city [J]. Asian Journal of Ecotoxicology, 2020, 15(4): 299-311(in Chinese).
[11] 曹夏, 周变红, 王锦, 等. 西安城区黑碳气溶胶的污染特征及来源解析 [J]. 环境化学, 2020, 39(11): 3072-3082. doi: 10.7524/j.issn.0254-6108.2020061501 CAO X, ZHOU B H, WANG J, et al. Characteristics and source analysis of black carbon aerosol in Xi'an Urban Area [J]. Environmental Chemistry, 2020, 39(11): 3072-3082(in Chinese). doi: 10.7524/j.issn.0254-6108.2020061501
[12] HAN X K, GUO Q J, LIU C Q, et al. Effect of the pollution control measures on PM2.5 during the 2015 China Victory Day Parade: Implication from water-soluble ions and sulfur isotope [J]. Environmental Pollution, 2016, 218: 230-241. doi: 10.1016/j.envpol.2016.06.038 [13] LIU P F, ZHANG C L, MU Y J, et al. The possible contribution of the periodic emissions from farmers' activities in the North China Plain to atmospheric water-soluble ions in Beijing [J]. Atmospheric Chemistry and Physics, 2016, 16(15): 10097-10109. doi: 10.5194/acp-16-10097-2016 [14] TIAN M, LIU Y, YANG F M, et al. Increasing importance of nitrate formation for heavy aerosol pollution in two megacities in Sichuan Basin, southwest China [J]. Environmental Pollution, 2019, 250: 898-905. doi: 10.1016/j.envpol.2019.04.098 [15] 张棕巍, 胡恭任, 于瑞莲, 等. 厦门市大气PM2.5中水溶性离子污染特征及来源解析 [J]. 中国环境科学, 2016, 36(7): 1947-1954. doi: 10.3969/j.issn.1000-6923.2016.07.004 ZHANG Z W, HU G R, YU R L, et al. Characteristics and sources apportionment of water-soluble ions in PM2.5 of Xiamen City, China [J]. China Environmental Science, 2016, 36(7): 1947-1954(in Chinese). doi: 10.3969/j.issn.1000-6923.2016.07.004
[16] 郑敬茹, 瞿厚淑, 付山, 等. 黄石市大气PM2.5中水溶性离子浓度特征及来源分析 [J]. 环境科学研究, 2019, 32(7): 1170-1178. ZHENG J R, QU H S, FU S, et al. Characteristics and source analysis of water-soluble inorganic ions in PM2.5 in Huangshi city [J]. Research of Environmental Sciences, 2019, 32(7): 1170-1178(in Chinese).
[17] 王念飞, 陈阳, 郝庆菊, 等. 苏州市PM2.5中水溶性离子的季节变化及来源分析 [J]. 环境科学, 2016, 37(12): 4482-4489. WANG N F, CHEN Y, HAO Q J, et al. Seasonal variation and source analysis of the water-soluble inorganic ions in fine particulate matter in Suzhou [J]. Environmental Science, 2016, 37(12): 4482-4489(in Chinese).
[18] ZHOU J B, XING Z Y, DENG J J, et al. Characterizing and sourcing ambient PM2.5 over key emission regions in China Ⅰ: Water-soluble ions and carbonaceous fractions [J]. Atmospheric Environment, 2016, 135: 20-30. doi: 10.1016/j.atmosenv.2016.03.054 [19] WU C, WANG G H, WANG J Y, et al. Chemical characteristics of haze particles in Xi'an during Chinese Spring Festival: Impact of fireworks burning [J]. Journal of Environmental Sciences, 2018, 71: 179-187. doi: 10.1016/j.jes.2018.04.008 [20] 黄含含, 王羽琴, 李升苹, 等. 西安市PM2.5中水溶性离子的季节变化特征 [J]. 环境科学, 2020, 41(6): 2528-2535. HUANG H H, WANG Y Q, LI S P, et al. Seasonal variation of water-soluble ions in PM2.5 in Xi'an [J]. Environmental Science, 2020, 41(6): 2528-2535(in Chinese).
[21] ZHANG T. , CAO J J, TIE X X, et al. Water-soluble ions in atmospheric aerosols measured in Xi'an, China: Seasonal variations and sources [J]. Atmospheric Research, 2011, 102(1-2): 110-119. doi: 10.1016/j.atmosres.2011.06.014 [22] NENES A, PANDIS S N, PILINIS C. ISORROPIA: A new thermodynamic equilibrium model for multiphase multicomponent inorganic aerosols [J]. Aquatic Geochemistry, 1998, 4(1): 123-152. doi: 10.1023/A:1009604003981 [23] YANG B, ZHOU L L, XUE N D, et al. Source apportionment of polycyclic aromatic hydrocarbons in soils of Huanghuai Plain, China: Comparison of three receptor models [J]. Science of the Total Environment, 2013, 443: 31-39. doi: 10.1016/j.scitotenv.2012.10.094 [24] 衣雅男, 侯战方, 孟静静, 等. 聊城市冬季PM2.5中水溶性化合物的昼夜变化特征及来源解析 [J]. 环境科学, 2019, 40(10): 4319-4329. YI Y N, HOU Z F, MENG J J, et al. Diurnal variations and source analysis of water-soluble compounds in PM2.5 during the winter in Liaocheng city [J]. Environmental Science, 2019, 40(10): 4319-4329(in Chinese).
[25] 别淑君, 杨凌霄, 高颖, 等. 济南市背景区域大气PM2.5污染特征及其对能见度的影响 [J]. 环境科学, 2019, 40(9): 3868-3874. BIE S J, YANG L X, GAO Y, et al. Characteristics of atmospheric PM2.5 pollution and its influence on visibility in background areas of Ji'nan [J]. Environmental Science, 2019, 40(9): 3868-3874(in Chinese).
[26] 丁新航, 梁越, 肖化云, 等. 太原市采暖季清洁天与灰霾天PM2.5中水溶性无机离子组成及来源分析 [J]. 环境化学, 2019, 38(6): 1356-1366. doi: 10.7524/j.issn.0254-6108.2018121102 DING X H, LIANG Y, XIAO H Y, et al. Composition and source analysis of water-soluble inorganic ions of PM2.5 in clean and haze days during heating season in Taiyuan City [J]. Environmental Chemistry, 2019, 38(6): 1356-1366(in Chinese). doi: 10.7524/j.issn.0254-6108.2018121102
[27] SHENG Z Z, CHE H Z, CHEN Q L, et al. Aerosol vertical distribution and optical properties of different pollution events in Beijing in autumn 2017 [J]. Atmospheric Research, 2019, 215: 193-207. doi: 10.1016/j.atmosres.2018.08.029 [28] 张颖龙, 李莉, 宋刘明, 等. 嘉善冬季PM2.5化学组分特征及来源分析 [J]. 环境化学, 2021, 40(3): 754-764. doi: 10.7524/j.issn.0254-6108.2020062303 ZHANG Y L, LI L, SONG L M, et al. Chemical components characteristic and source apportionment of PM2.5 during winter in Jiaxing [J]. Environmental Chemistry, 2021, 40(3): 754-764(in Chinese). doi: 10.7524/j.issn.0254-6108.2020062303
[29] 张婷, 曹军骥, 刘随心. 宝鸡市PM2.5中水溶性离子组分污染特征及来源分析 [J]. 地球环境学报, 2017, 8(1): 46-54. doi: 10.7515/JEE201701006 ZHANG T, CAO J J, LIU S X. Pollution characteristics and sources of water-soluble ions in PM2.5 in Baoji [J]. Journal of Earth Environment, 2017, 8(1): 46-54(in Chinese). doi: 10.7515/JEE201701006
[30] 宿文康, 鲍晓磊, 倪爽英, 等. 2018年石家庄市秋冬季典型霾污染特征 [J]. 环境科学, 2019, 40(11): 4755-4763. SU W K, BAO X L, NI S Y, et al. Characteristics of haze pollution episodes during autumn and winter in 2018 in Shijiazhuang [J]. Environmental Science, 2019, 40(11): 4755-4763(in Chinese).
[31] 张勇, 刘随心, 曹军骥, 等. 汉中市秋季PM2.5昼夜变化特征 [J]. 地球环境学报, 2019, 10(1): 79-86. ZHANG Y, LIU S X, CAO J J, et al. Diurnal variation characteristics of PM2.5 in Hanzhong in autumn [J]. Journal of Earth Environment, 2019, 10(1): 79-86(in Chinese).
[32] 李欢, 唐贵谦, 张军科, 等. 2017—2018年北京大气PM2.5中水溶性无机离子特征 [J]. 环境科学, 2020, 41(10): 4364-4373. LI H, TANG G Q, ZHANG J K, et al. Characteristics of water-soluble inorganic ions in PM2.5 in Beijing during 2017-2018 [J]. Environmental Science, 2020, 41(10): 4364-4373(in Chinese).
[33] 杨留明, 王申博, 郝祺, 等. 郑州市PM2.5中水溶性离子特征及来源分析 [J]. 环境科学, 2019, 40(7): 2977-2984. YANG L M, WANG S B, HAO Q, et al. Characteristics and source analysis of water-soluble ions in PM2.5 in Zhengzhou [J]. Environmental Science, 2019, 40(7): 2977-2984(in Chinese).
[34] WANG Y, ZHUANG G S, TANG A H, et al. The ion chemistry and the source of PM2.5 aerosol in Beijing [J]. Atmospheric Environment, 2005, 39(21): 3771-3784. doi: 10.1016/j.atmosenv.2005.03.013 [35] 李欣悦, 张凯山, 武文琪, 等. 成都市城区大气细颗粒物水溶性离子污染特征 [J]. 中国环境科学, 2021, 41(1): 91-101. doi: 10.3969/j.issn.1000-6923.2021.01.011 LI X Y, ZHANG K S, WU W Q, et al. Characterization of water-soluble ions pollution of atmospheric fine particles in Chengdu City [J]. China Environmental Science, 2021, 41(1): 91-101(in Chinese). doi: 10.3969/j.issn.1000-6923.2021.01.011
[36] 宿文康, 鲍晓磊, 孟琛琛, 等. 冬季PM2.5中无机水溶性离子与大气相对湿度的相关性 [J]. 环境科学学报, 2021, 41(5): 1734-1740. SU W K, BAO X L, MENG C C, et al. Correlation analysis on inorganic water soluble ions in PM2.5 and relative humidity of atmosphere in winter [J]. Acta Scientiae Circumstantiae, 2021, 41(5): 1734-1740(in Chinese).
[37] BAUER S E, KOCH D, UNGER N, et al. Nitrate aerosols today and in 2030: A global simulation including aerosols and tropospheric ozone [J]. Atmospheric Chemistry and Physics, 2007, 7(19): 5043-5059. doi: 10.5194/acp-7-5043-2007 [38] 宝鸡市统计局. 2012年宝鸡市国民经济和社会发展统计公报[EB/OL]. [2013-3-18]. http://tjj.baoji.gov.cn/art/2013/3/18/art_1959_182233.html. [39] 宝鸡市统计局. 2019年宝鸡市国民经济和社会发展统计公报[EB/OL]. [2021-12-6]. http://tjj.baoji.gov.cn/art/2020/4/1/art_1959_533131.html [40] XU L L, CHEN X Q, CHEN J S, et al. Seasonal variations and chemical compositions of PM2.5 aerosol in the urban area of Fuzhou, China [J]. Atmospheric Research, 2012, 104/105: 264-272. doi: 10.1016/j.atmosres.2011.10.017 [41] YANG Y J, ZHOU R, YU Y, et al. Size-resolved aerosol water-soluble ions at a regional background station of Beijing, Tianjin, and Hebei, North China [J]. Journal of Environmental Sciences, 2017, 55: 146-156. doi: 10.1016/j.jes.2016.07.012 [42] PATHAK R K, LOUIE P K K, CHAN C K. Characteristics of aerosol acidity in Hong Kong [J]. Atmospheric Environment, 2004, 38(19): 2965-2974. doi: 10.1016/j.atmosenv.2004.02.044 [43] HUA Y, CHENG Z, WANG S X, et al. Characteristics and source apportionment of PM2.5 during a fall heavy haze episode in the Yangtze River Delta of China [J]. Atmospheric Environment, 2015, 123: 380-391. doi: 10.1016/j.atmosenv.2015.03.046 [44] 吴丹, 蔺少龙, 杨焕强, 等. 杭州市PM2.5中水溶性离子的污染特征及其消光贡献 [J]. 环境科学, 2017, 38(7): 2656-2666. WU D, LIN S L, YANG H Q, et al. Pollution characteristics and light extinction contribution of water-soluble ions of PM2.5 in Hangzhou [J]. Environmental Science, 2017, 38(7): 2656-2666(in Chinese).
[45] XU L L, DUAN F K, HE K B, et al. Characteristics of the secondary water-soluble ions in a typical autumn haze in Beijing [J]. Environmental Pollution, 2017, 227: 296-305. doi: 10.1016/j.envpol.2017.04.076